Skip to main content

Advertisement

Log in

Pharmacometabolomics informs pharmacogenomics

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

The initial decades of the twenty-first century have witnessed striking technical advances that have made it possible to detect, identify and quantitatively measure large numbers of plasma or tissue metabolites. In parallel, similar advances have taken place in our ability to sequence DNA and RNA. Those advances have moved us beyond studies of single metabolites and single genetic polymorphisms to the study of hundreds or thousands of metabolites and millions of genomic variants in a single cell or subject. It is now possible to merge and integrate large data sets generated by the use of different “-omics” techniques to increase our understanding of the molecular basis for variation in disease risk and/or drug response phenotypes.

Objectives

This “Brief Review” will outline some of the challenges and opportunities associated with studies in which metabolomic data have been merged with genomics in an attempt to gain novel insight into mechanisms associated with variation in drug response phenotypes, with an emphasis on the application of a pharmacometabolomics-informed pharmacogenomic research strategy and with selected examples of the application of that strategy.

Methods

Studies that used pharmacometabolomics to inform and guide pharmacogenomics were reviewed. Clinical studies that were used as the basis for pharmacometabolomics-informed pharmacogenomic studies, published in five independent manuscripts, are described briefly.

Results

Within these five manuscripts, both pharmacokinetic and pharmacodynamic metabolomics approaches were used. Candidate gene and genome-wide approaches that were used in concert with these metabolomic data identified novel metabolite-gene relationships that were associated with drug response phenotypes in these pharmacometabolomics-informed pharmacogenomics studies.

Conclusion

This “Brief Review” outlines the emerging discipline of pharmacometabolomics-informed pharmacogenomics in which metabolic profiles are associated with both clinical phenotypes and genetic variants to identify novel genetic variants associated with drug response phenotypes based on metabolic profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Cross, H. E. (1976). Population studies and the old order Amish. Nature, 262(5563), 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Ellero-Simatos, S., Lewis, J. P., Georgiades, A., Yerges-Armstrong, L. M., Beitelshees, A. L., Horenstein, R. B., et al. (2014). Pharmacometabolomics reveals that serotonin is implicated in aspirin response variability. CPT: Pharmacometrics and Systems Pharmacology, 3, e125. doi:10.1038/psp.2014.22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gavaghan McKee, C. L., Wilson, I. D., & Nicholson, J. K. (2006). Metabolic phenotyping of nude and normal (Alpk:ApfCD, C57BL10 J) mice. Journal of Proteome Research, 5(2), 378–384. doi:10.1021/pr050255h.

    Article  CAS  PubMed  Google Scholar 

  • Gieger, C., Geistlinger, L., Altmaier, E., Hrabe de Angelis, M., Kronenberg, F., Meitinger, T., et al. (2008). Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. PLoS Genetics, 4(11), e1000282. doi:10.1371/journal.pgen.1000282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta, M., Neavin, D., Liu, D., Biernacka, J., Hall-Flavin, D., Bobo, W. V., et al. (2016). TSPAN5, ERICH3 and selective serotonin reuptake inhibitors in major depressive disorder: Pharmacometabolomics-informed pharmacogenomics. Molecular Psychiatry. doi:10.1038/mp.2016.6.

    Google Scholar 

  • Illig, T., Gieger, C., Zhai, G., Romisch-Margl, W., Wang-Sattler, R., Prehn, C., et al. (2010). A genome-wide perspective of genetic variation in human metabolism. Nature Genetics, 42(2), 137–141. doi:10.1038/ng.507.

    Article  CAS  PubMed  Google Scholar 

  • Ingle, J. N., Liu, M., Wickerham, D. L., Schaid, D. J., Wang, L., Mushiroda, T., et al. (2013). Selective estrogen receptor modulators and pharmacogenomic variation in ZNF423 regulation of BRCA1 expression: Individualized breast cancer prevention. Cancer Discovery, 3(7), 812–825. doi:10.1158/2159-8290.cd-13-0038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingle, J. N., Schaid, D. J., Goss, P. E., Liu, M., Mushiroda, T., Chapman, J. A., et al. (2010). Genome-wide associations and functional genomic studies of musculoskeletal adverse events in women receiving aromatase inhibitors. Journal of Clinical Oncology, 28(31), 4674–4682. doi:10.1200/jco.2010.28.5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobsen, J. P., Plenge, P., Sachs, B. D., Pehrson, A. L., Cajina, M., Du, Y., et al. (2014). The interaction of escitalopram and R-citalopram at the human serotonin transporter investigated in the mouse. Psychopharmacology (Berl), 231(23), 4527–4540. doi:10.1007/s00213-014-3595-1.

    Article  CAS  Google Scholar 

  • Ji, Y., Biernacka, J. M., Hebbring, S., Chai, Y., Jenkins, G. D., Batzler, A., et al. (2013). Pharmacogenomics of selective serotonin reuptake inhibitor treatment for major depressive disorder: Genome-wide associations and functional genomics. The pharmacogenomics Journal, 13(5), 456–463. doi:10.1038/tpj.2012.32.

    Article  CAS  PubMed  Google Scholar 

  • Ji, Y., Hebbring, S., Zhu, H., Jenkins, G. D., Biernacka, J., Snyder, K., et al. (2011). Glycine and a glycine dehydrogenase (GLDC) SNP as citalopram/escitalopram response biomarkers in depression: Pharmacometabolomics-informed pharmacogenomics. Clinical Pharmacology and Therapeutics, 89(1), 97–104. doi:10.1038/clpt.2010.250.

    Article  CAS  PubMed  Google Scholar 

  • Ji, Y., Schaid, D. J., Desta, Z., Kubo, M., Batzler, A. J., Snyder, K., et al. (2014). Citalopram and escitalopram plasma drug and metabolite concentrations: Genome-wide associations. British Journal of Clinical Pharmacology, 78(2), 373–383. doi:10.1111/bcp.12348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaddurah-Daouk, R., Kristal, B. S., & Weinshilboum, R. M. (2008). Metabolomics: A global biochemical approach to drug response and disease. Annual Review of Pharmacology and Toxicology, 48, 653–683. doi:10.1146/annurev.pharmtox.48.113006.094715.

    Article  CAS  PubMed  Google Scholar 

  • Kaddurah-Daouk, R., & Weinshilboum, R. M. (2014). Pharmacometabolomics: Implications for clinical pharmacology and systems pharmacology. Clinical Pharmacology and Therapeutics, 95(2), 154–167. doi:10.1038/clpt.2013.217.

    Article  CAS  PubMed  Google Scholar 

  • Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J., et al. (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860–921. doi:10.1038/35057062.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, J. P., Yerges-Armstrong, L. M., Ellero-Simatos, S., Georgiades, A., Kaddurah-Daouk, R., & Hankemeier, T. (2013). Integration of pharmacometabolomic and pharmacogenomic approaches reveals novel insights into antiplatelet therapy. Clinical Pharmacology and Therapeutics, 94(5), 570–573. doi:10.1038/clpt.2013.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell, B. D., McArdle, P. F., Shen, H., Rampersaud, E., Pollin, T. I., Bielak, L. F., et al. (2008). The genetic response to short-term interventions affecting cardiovascular function: Rationale and design of the Heredity and Phenotype Intervention (HAPI) Heart Study. American Heart Journal, 155(5), 823–828. doi:10.1016/j.ahj.2008.01.019.

    Article  PubMed  PubMed Central  Google Scholar 

  • Suhre, K., Shin, S. Y., Petersen, A. K., Mohney, R. P., Meredith, D., Wagele, B., et al. (2011). Human metabolic individuality in biomedical and pharmaceutical research. Nature, 477(7362), 54–60. doi:10.1038/nature10354.

    Article  CAS  PubMed  Google Scholar 

  • Wang, L., McLeod, H. L., & Weinshilboum, R. M. (2011). Genomics and drug response. New England Journal of Medicine, 364(12), 1144–1153. doi:10.1056/NEJMra1010600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S. (2016). Emerging applications of metabolomics in drug discovery and precision medicine. Nature Reviews Drug Discovery. doi:10.1038/nrd.2016.32.

    PubMed  Google Scholar 

  • Yap, I. K., Clayton, T. A., Tang, H., Everett, J. R., Hanton, G., Provost, J. P., et al. (2006). An integrated metabonomic approach to describe temporal metabolic disregulation induced in the rat by the model hepatotoxin allyl formate. Journal of Proteome Research, 5(10), 2675–2684. doi:10.1021/pr0601584.

    Article  CAS  PubMed  Google Scholar 

  • Yerges-Armstrong, L. M., Ellero-Simatos, S., Georgiades, A., Zhu, H., Lewis, J. P., Horenstein, R. B., et al. (2013). Purine pathway implicated in mechanism of resistance to aspirin therapy: Pharmacometabolomics-informed pharmacogenomics. Clinical Pharmacology and Therapeutics, 94(4), 525–532. doi:10.1038/clpt.2013.119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, H., Hansen, K. B., Boyle, N. J., Han, K., Muske, G., Huang, X., et al. (2009). An allosteric binding site at the human serotonin transporter mediates the inhibition of escitalopram by R-citalopram: Kinetic binding studies with the ALI/VFL-SI/TT mutant. Neuroscience Letters, 462(3), 207–212. doi:10.1016/j.neulet.2009.07.030.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by U19 GM61388 (the Pharmacogenomics Research Network), RO1 GM28157 and by R24 GM078233 (The Metabolomics Research Network for Drug Response Phenotype) and by RC2 GM092729 (The Metabolomics Network for Drug Response Phenotype).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Weinshilboum.

Ethics declarations

Conflict of interest

The authors declare they have no conflicts of interest.

Informed consent

All the patients included in the studies described in this review were reported to have provided informed consent for their participation in the original research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neavin, D., Kaddurah-Daouk, R. & Weinshilboum, R. Pharmacometabolomics informs pharmacogenomics. Metabolomics 12, 121 (2016). https://doi.org/10.1007/s11306-016-1066-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-1066-x

Keywords

Navigation