Skip to main content

Advertisement

Log in

Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

An Erratum to this article was published on 17 February 2016

Abstract

Despite numerous research efforts to control tuberculosis, it is still regarded as a global pandemic. It is clear that the infectious agent responsible and its associated disease mechanisms remain poorly understood. Alternative research strategies are therefore urgently needed to better characterize active-TB, especially the adaptations of the host and microbe as they compete to survive. Using a GCxGC-TOFMS metabolomics approach, we identified new urinary TB metabolite markers induced by adaptations of the host metabolome and/or host-pathogen interactions. The most significant of these were the TB-induced changes resulting in abnormal host fatty acid and amino acid metabolism, in particular to tryptophan, phenylalanine and tyrosine, inducing a metabolite profile similar to that of patients suffering from phenylketonuria, mediated through changes to INF-γ and possibly insulin. This subsequently also explains some of the symptoms associated with TB and provides clues to better treatment approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams, S. H. (2011). Emerging perspectives on essential amino acid metabolism in obesity and the insulin-resistant state. Advances in Nutrition, 2, 445–456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam, S., Khalil, S., Ayub, N., & Rashid, M. (2002). In vitro solubilization of inorganic phosphate by phosphate solubilizing microorganisms (PSM) from maize rhizosphere. International Journal of Agriculture and Biology., 4, 454–458.

    CAS  Google Scholar 

  • Asp, L., Johansson, A. S., Mann, A., et al. (2011). Effects of pro-inflammatory cytokines on expression of kynurenine pathway enzymes in human dermal fibroblasts. Journal of Inflammation (London), 8, 25.

    Article  CAS  Google Scholar 

  • Brereton, R. G. (2003). Chemometrics: Data analysis for the laboratory and chemical plant. Chichester: Wiley.

    Book  Google Scholar 

  • Cabrera, J., Reiter, R. J., Tan, D., et al. (2000). Melatonin reduces oxidative neurotoxicity due to quinolinic acid: In vitro and in vivo findings. Neuropharmacology, 39, 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Cansev, M., & Wurtman, R. (2007). Aromatic amino acids in the brain. Handbook of neurochemistry and molecular neurobiology (pp. 59–97). Berlin: Springer.

    Chapter  Google Scholar 

  • Choi, A. M., Ryter, S. W., & Levine, B. (2013). Autophagy in human health and disease. New England Journal of Medicine, 368, 651–662.

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho, L. P. S., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S., & Rhee, K. Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Chemistry & Biology, 17, 1122–1131.

    Article  Google Scholar 

  • De Villiers, L., & Loots, D. T. (2013). Using metabolomics for elucidating the mechanisms related to tuberculosis treatment failure. Current Metabolomics, 1, 306–317.

    Article  Google Scholar 

  • Deretic, V., & Levine, B. (2009). Autophagy, immunity, and microbial adaptations. Cell Host & Microbe, 5, 527–549.

    Article  CAS  Google Scholar 

  • Deter, R. L., & De Duve, C. (1967). Influence of glucagon, an inducer of cellular autophagy, on some physical properties of rat liver lysosomes. Journal of Cell Biology, 33, 437–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dooley, K. E., & Chaisson, R. E. (2009). Tuberculosis and diabetes mellitus: Convergence of two epidemics. The Lancet Infectious Diseases, 9, 737–746.

    Article  PubMed  PubMed Central  Google Scholar 

  • Drapal, M., Perez-Fons, L., Wheeler, P. R., & Fraser, P. D. (2014). The application of metabolite profiling to Mycobacterium spp.: Determination of metabolite changes associated with growth. Journal of Microbiol Methods, 106, 23–32.

    Article  CAS  Google Scholar 

  • Du Preez, I., & Loots, D. T. (2013). New sputum metabolite markers implicating adaptations of the host to Mycobacterium tuberculosis, and vice versa. Tuberculosis, 93, 330–337.

    Article  PubMed  Google Scholar 

  • Ellis, S., & Steyn, H. (2003). Practical significance (effect sizes) versus or in combination with statistical significance (p-values): Research note. Management Dynamics, 12, 51–53.

    Google Scholar 

  • Eoh, H., Brown, A. C., Buetow, L., et al. (2007). Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: Potential for drug development. Journal of Bacteriology, 189, 8922–8927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goletti, D., Petruccioli, E., Romagnoli, A., Piacentini, M., & Fimia, G. M. (2013). Autophagy in Mycobacterium tuberculosis infection: A passepartout to flush the intruder out? Cytokine & Growth Factor Reviews, 24, 335–343.

    Article  CAS  Google Scholar 

  • Gutierrez, M. G., Master, S. S., Singh, S. B., Taylor, G. A., Colombo, M. I., & Deretic, V. (2004). Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell, 119, 753–766.

    Article  CAS  PubMed  Google Scholar 

  • Heyes, M. P., Saito, K., & Markey, S. P. (1992). Human macrophages convert l-tryptophan into the neurotoxin quinolinic acid. Biochemical Journal, 283, 633–635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kairamkonda, V., Dalzell, M., Losty, P. D., & Davidson, C. (2003). Perforated duodenal ulcer disclosing medium chain acyl-CoA dehydrogenase deficiency. Archives of Disease in Childhood, 88, 88–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kholodar, S. A., & Murkin, A. S. (2013). DXP reductoisomerase: Reaction of the substrate in pieces reveals a catalytic role for the nonreacting phosphodianion group. Biochemistry, 52, 2302–2308.

    Article  CAS  PubMed  Google Scholar 

  • Long, N. H., Diwan, V. K., & Winkvist, A. (2002). Difference in symptoms suggesting pulmonary tuberculosis among men and women. Journal of Clinical Epidemiology, 55, 115–120.

    Article  PubMed  Google Scholar 

  • Loots, D. T., Mienie, L. J., Bergh, J. J., der Schyf, Van, & Cornelis, J. (2004). Acetyl-L-carnitine prevents total body hydroxyl free radical and uric acid production induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the rat. Life Sciences, 75, 1243–1253.

    Article  CAS  PubMed  Google Scholar 

  • Loots, D. T., Wiid, I. J., Page, B. J., Mienie, L. J., & Helden, P. D. (2005). Melatonin prevents the free radical and MADD metabolic profiles induced by antituberculosis drugs in an animal model. Journal of Pineal Research, 38, 100–106.

    Article  CAS  PubMed  Google Scholar 

  • Lübbe, C., Van Pée, K., Salcher, O., & Lingens, F. (1983). The metabolism of tryptophan and 7-chlorotryptophan in Pseudomonas pyrrocinia and Pseudomonas aureofaciens. Hoppe-Seyler’s Zeitschrift für physiologische Chemie, 364, 447–454.

    Article  PubMed  Google Scholar 

  • Mao, F., Chen, T., Zhao, Y., et al. (2011). Insulin resistance: A potential marker and risk factor for active tuberculosis? Medical Hypotheses, 77, 66–68.

    Article  CAS  PubMed  Google Scholar 

  • McInnes, R. R., Kaufman, S., Warsh, J. J., et al. (1984). Biopterin synthesis defect: Treatment with L-dopa and 5-hydroxytryptophan compared with therapy with a tetrahydropterin. Journal of Clinical Investigation, 73, 458–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikusova, K., Mikus, M., Besra, G. S., Hancock, I., & Brennan, P. J. (1996). Biosynthesis of the linkage region of the mycobacterial cell wall. Journal of Biological Chemistry, 271, 7820–7828.

    Article  CAS  PubMed  Google Scholar 

  • Mizushima, N. (2007). Autophagy: Process and function. Genes & Development, 21, 2861–2873.

    Article  CAS  Google Scholar 

  • Niu, J., Pi, Z., Yue, H., Wang, Y., Yu, Q., & Liu, S. (2012). Effect of ginseng polysaccharide on the urinary excretion of type 2 diabetic rats studied by liquid chromatography–mass spectrometry. Journal of Chromatography B, 907, 7–12.

    Article  CAS  Google Scholar 

  • Philips, J. A., & Ernst, J. D. (2012). Tuberculosis pathogenesis and immunity. Annual Review of Pathology: Mechanisms of Disease, 7, 353–384.

    Article  CAS  Google Scholar 

  • Puri, D. (2006). Textbook of medical biochemistry: Clinical cases Chapter 13.2. Textbook of medical biochemistry (p. 376). New-Delhi: Elsevier.

    Google Scholar 

  • Rhee, K. Y., Carvalho, De, Sorio, Luiz Pedro, Bryk, R., et al. (2011). Central carbon metabolism in Mycobacterium tuberculosis: An unexpected frontier. Trends in Microbiology, 19, 307–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robitaille, L., Mamer, O. A., Miller, W. H, Jr, et al. (2009). Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism, Clinical and Experimental, 58, 263–269.

    Article  CAS  Google Scholar 

  • Schoeman, J. C., Du Preez, I., & Loots, D. T. (2012). A comparison of four sputum pre-extraction preparation methods for identifying and characterising M. tuberculosis using GCxGC-TOFMS metabolomics. Journal of Microbiol Methods, 91, 301–311.

    Article  CAS  Google Scholar 

  • Sherwin, C. P., & Kennard, K. S. (1919). Toxicity of phenylacetic acid. Journal of Biological Chemistry, 40, 259–264.

    CAS  Google Scholar 

  • Silhavy, T. J., Kahne, D., & Walker, S. (2010). The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology, 2, a000414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh, V., Jamwal, S., Jain, R., Verma, P., Gokhale, R., & Rao, K. V. (2012). Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host & Microbe, 12, 669–681.

    Article  CAS  Google Scholar 

  • Singh, V. V., & Toskes, P. P. (2004). Small bowel bacterial overgrowth: Presentation, diagnosis, and treatment. Current Treatment Options in Gastroenterology, 7, 19–28.

    Article  PubMed  Google Scholar 

  • Singhal, A., Jie, L., Kumar, P., et al. (2014). Metformin as adjunct antituberculosis therapy. Science Translational Medicine, 6, 263ra159.

    Article  PubMed  Google Scholar 

  • Smuts, I., Der Westhuizen, Van, Francois, H., Louw, R., et al. (2013). Disclosure of a putative biosignature for respiratory chain disorders through a metabolomics approach. Metabolomics, 9, 379–391.

    Article  CAS  Google Scholar 

  • Suzuki, Y., Suda, T., Asada, K., et al. (2012). Serum indoleamine 2,3-dioxygenase activity predicts prognosis of pulmonary tuberculosis. Clinical and Vaccine Immunology, 19, 436–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tai, E., Tan, M., Stevens, R., et al. (2010). Insulin resistance is associated with a metabolic profile of altered protein metabolism in Chinese and Asian-Indian men. Diabetologia, 53, 757–767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Velagapudi, V. R., Hezaveh, R., Reigstad, C. S., et al. (2010). The gut microbiota modulates host energy and lipid metabolism in mice. Journal of Lipid Research, 51, 1101–1112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venter, L., Lindeque, Z., Van Rensburg, P. J., Van Der Westhuizen, F., Smuts, I., & Louw, R. (2015). Untargeted urine metabolomics reveals a biosignature for muscle respiratory chain deficiencies. Metabolomics, 11, 111–121.

    Article  CAS  Google Scholar 

  • Wang, S., Kuo, C., & Tseng, Y. J. (2012). Batch normalizer: A fast total abundance regression calibration method to simultaneously adjust batch and injection order effects in liquid chromatography/time-of-flight mass spectrometry-based metabolomics data and comparison with current calibration methods. Analytical Chemistry, 85, 1037–1046.

    Article  PubMed  Google Scholar 

  • Warner, D. F. (2014). Mycobacterium tuberculosis metabolism. Cold Spring Harbor Perspectives in Medicine,. doi:10.1101/cshperspect.a021121.

    PubMed  Google Scholar 

  • World Health Organization. (2014). Tuberculosis: WHO global tuberculosis report 2014, 1–2.

Download references

Author contribution

Both authors contributed equally to this work: DTL conceptionalized the study design, and LDV did the data acquisition/analysis. LDV worked on data interpretation, and drafted the article, and DTL revised it critically for important intellectual content. Both authors approved the final version to be submitted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Toit Loots.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest, and that this manuscript, and the work described therein, is unpublished and has not been submitted for publication elsewhere.

Ethical approval

Ethical approval for this investigation, carried out according to the Declaration of Helsinki and International Conference of Harmonization guidelines, was obtained from the Ethics Committee of the North-West University, South Africa (Number NWU-00127-11-A1). All participants gave written informed consent for collection of urine and its use as described.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luier, L., Loots, D.T. Tuberculosis metabolomics reveals adaptations of man and microbe in order to outcompete and survive. Metabolomics 12, 40 (2016). https://doi.org/10.1007/s11306-016-0969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-016-0969-x

Keywords

Navigation