Skip to main content
Log in

Metabolomics connects aberrant bioenergetic, transmethylation, and gut microbiota in sarcoidosis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Sarcoidosis is a systemic granulomatous disease of unknown etiology. Granulomatous inflammation in sarcoidosis may affect multiple organs, including the lungs, skin, CNS, and the eyes, leading to severe morbidity and mortality. The underlying mechanisms for sustained inflammation in sarcoidosis are unknown. We hypothesized that metabolic changes play a critical role in perpetuation of inflammation in sarcoidosis. 1H nuclear magnetic resonance (NMR)-based untargeted metabolomic analysis was used to identify circulating molecules in serum to discriminate sarcoidosis patients from healthy controls. Principal component analyses (PCA) were performed to identify different metabolic markers and explore the changes of associated biochemical pathways. Using Chenomx 7.6 NMR Suite software, we identified and quantified metabolites responsible for such separation in the PCA models. Quantitative analysis showed that the levels of metabolites, such as 3-hydroxybutyrate, acetoacetate, carnitine, cystine, homocysteine, pyruvate, and trimethylamine N-oxide were significantly increased in sarcoidosis patients. Interestingly, succinate, a major intermediate metabolite involved in the tricyclic acid cycle was significantly decreased in sarcoidosis patients. Application of integrative pathway analyses identified deregulation of butanoate, ketone bodies, citric cycle metabolisms, and transmethylation. This may be used for development of new drugs or nutritional modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ASCT2:

Amino acid transporter 2

BMI:

Body mass index

CD4+ :

Cluster of differentiation 4

D2O:

Deuterium oxide

DSS:

Disodium-2,2-dimethyl 2-silapentane-5-sulphonate

KEGG:

Kyoto Encyclopedia of Genes and Genomes

NMR:

Nuclear magnetic resonance

NOESY:

Nuclear Overhauser effect spectroscopy

PC:

Principal component

PCA:

Principal component analysis

PLS-DA:

Partial least square discriminant analysis

SIMCA:

Soft independent modeling of class analogy

TCA:

Tricarboxylic acid cycle

Th1:

T-helper type 1

TLR4:

Toll-like receptor 4

TMA:

Trimethylamine

TMAO:

Trimethylamine N-oxide

VIP:

Variable importance in the projection

References

  • Altermann, E., & Klaenhammer, T. R. (2005). PathwayVoyager: Pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. BMC Genomics, 6, 60.

    Article  PubMed Central  PubMed  Google Scholar 

  • Barallobre-Barreiro, J., Chung, Y. L., & Mayr, M. (2013). Proteomics and metabolomics for mechanistic insights and biomarker discovery in cardiovascular disease. Revista Española de Cardiología (English Edition), 66, 657–661.

    Article  Google Scholar 

  • Bhuiyan, A. K., Jackson, S., Turnbull, D. M., Aynsley-Green, A., Leonard, J. V., & Bartlett, K. (1992). The measurement of carnitine and acyl-carnitines: application to the investigation of patients with suspected inherited disorders of mitochondrial fatty acid oxidation. Clinica Chimica Acta, 207, 185–204.

    Article  CAS  Google Scholar 

  • Chen, G., Li, D., Jin, Y., Zhang, W., Teng, L., Bunt, C., & Wen, J. (2014). Deformable liposomes by reverse-phase evaporation method for an enhanced skin delivery of (+)-catechin. Drug Development and Industrial Pharmacy, 40, 260–265.

    Article  CAS  PubMed  Google Scholar 

  • Dawson, H., Collins, G., Pyle, R., Deep-Dixit, V., & Taub, D. D. (2004). The immunoregulatory effects of homocysteine and its intermediates on T-lymphocyte function. Mechanisms of Ageing and Development, 125, 107–110.

    Article  CAS  PubMed  Google Scholar 

  • Defeo, E. M., Wu, C. L., McDougal, W. S., & Cheng, L. L. (2011). A decade in prostate cancer: from NMR to metabolomics. Nature Reviews Urology, 8, 301–311.

    Article  CAS  PubMed  Google Scholar 

  • De-Souza, D. A., & Greene, L. J. (2005). Intestinal permeability and systemic infections in critically ill patients: effect of glutamine. Critical Care Medicine, 33, 1125–1135.

    Article  PubMed  Google Scholar 

  • Donohoe, D. R., Collins, L. B., Wali, A., Bigler, R., Sun, W., & Bultman, S. J. (2012). The Warburg effect dictates the mechanism of butyrate-mediated histone acetylation and cell proliferation. Molecular Cell, 48, 612–626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duncan, S. H., Holtrop, G., Lobley, G. E., Calder, A. G., Stewart, C. S., & Flint, H. J. (2004). Contribution of acetate to butyrate formation by human faecal bacteria. British Journal of Nutrition, 91, 915–923.

    Article  CAS  PubMed  Google Scholar 

  • Furusawa, Y., Obata, Y., Fukuda, S., Endo, T. A., Nakato, G., Takahashi, D., et al. (2013). Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature, 504, 446–450.

    Article  CAS  PubMed  Google Scholar 

  • Gregory, J. F., I. I. I., Park, Y., Lamers, Y., Bandyopadhyay, N., Chi, Y. Y., Lee, K., et al. (2013). Metabolomic analysis reveals extended metabolic consequences of marginal vitamin B-6 deficiency in healthy human subjects. PLoS ONE, 8, e63544.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hunninghake, G. W., Costabel, U., Ando, M., Baughman, R., Cordier, J. F., du Bois, R., et al. (1999). ATS/ERS/WASOG statement on sarcoidosis. American Thoracic Society/European Respiratory Society/World Association of Sarcoidosis and other Granulomatous Disorders. Sarcoidosis, Vasculitis, and Diffuse Lung Diseases, 16, 149–173.

    CAS  PubMed  Google Scholar 

  • Iannuzzi, M. C., Rybicki, B. A., & Teirstein, A. S. (2007). Sarcoidosis. New England Journal of Medicine, 357, 2153–2165.

    Article  CAS  PubMed  Google Scholar 

  • Ivanisevic, J., Kotur-Stevuljevic, J., Stefanovic, A., Jelic-Ivanovic, Z., Spasic, S., Videnovic-Ivanov, J., et al. (2012). Dyslipidemia and oxidative stress in sarcoidosis patients. Clinical Biochemistry, 45, 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Jayavelu, N. D., & Bar, N. S. (2014). Metabolomic studies of human gastric cancer: Review. World Journal of Gastroenterology, 20, 8092–8101.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koeth, R. A., Wang, Z., Levison, B. S., Buffa, J. A., Org, E., Sheehy, B. T., et al. (2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine, 19, 576–585.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Louis, P., Duncan, S. H., McCrae, S. I., Millar, J., Jackson, M. S., & Flint, H. J. (2004). Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. Journal of Bacteriology, 186, 2099–2106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lower, E. E., Malhotra, A., Sudurlescu, V., & Baughman, R. P. (2013). Sarcoidosis, fatigue, and sleep apnea. Chest, 144, 1976–1977.

    Article  PubMed  Google Scholar 

  • Lu, J., Xie, G., Jia, W., & Jia, W. (2013). Metabolomics in human type 2 diabetes research. Frontiers of Medicine, 7, 4–13.

    Article  PubMed  Google Scholar 

  • McClelland, G. B. (2004). Fat to the fire: The regulation of lipid oxidation with exercise and environmental stress. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139, 443–460.

    Article  Google Scholar 

  • Nakaya, M., Xiao, Y., Zhou, X., Chang, J. H., Chang, M., Cheng, X., et al. (2014). Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity, 40, 692–705.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nelson, D. L., & Cox, M. M. (2012). Lehninger principles of biochemistry. New York: W.H. Freeman.

    Google Scholar 

  • Ni, Y., Su, M., Lin, J., Wang, X., Qiu, Y., Zhao, A., et al. (2008). Metabolic profiling reveals disorder of amino acid metabolism in four brain regions from a rat model of chronic unpredictable mild stress. FEBS Letters, 582, 2627–2636.

    Article  CAS  PubMed  Google Scholar 

  • Noga, M. J., Dane, A., Shi, S., Attali, A., van Aken, H., Suidgeest, E., et al. (2012). Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics, 8, 253–263.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Neill, L. A., & Hardie, D. G. (2013). Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 493, 346–355.

    Article  PubMed  Google Scholar 

  • O’Sullivan, D., van der Windt, G. J., Huang, S. C., Curtis, J. D., Chang, C. H., Buck, M. D., et al. (2014). Memory CD8(+) T cells use cell-intrinsic lipolysis to support the metabolic programming necessary for development. Immunity, 41, 75–88.

    Article  PubMed Central  PubMed  Google Scholar 

  • Pearce, E. L., Poffenberger, M. C., Chang, C. H., & Jones, R. G. (2013). Fueling immunity: Insights into metabolism and lymphocyte function. Science, 342, 1242454.

    Article  PubMed Central  PubMed  Google Scholar 

  • Rastogi, R., Du, W., Ju, D., Pirockinaite, G., Liu, Y., Nunez, G., & Samavati, L. (2011). Dysregulation of p38 and MKP-1 in response to NOD1/TLR4 stimulation in sarcoid bronchoalveolar cells. American Journal of Respiratory and Critical Care Medicine, 183, 500–510.

    Article  CAS  PubMed  Google Scholar 

  • Redlich, C. A., Tarlo, S. M., Hankinson, J. L., Townsend, M. C., Eschenbacher, W. L., von Essen, S. G., et al. (2014). Official American Thoracic Society technical standards: Spirometry in the occupational setting. American Journal of Respiratory and Critical Care Medicine, 189, 983–993.

    Article  PubMed  Google Scholar 

  • Sinclair, L. V., Rolf, J., Emslie, E., Shi, Y. B., Taylor, P. M., & Cantrell, D. A. (2013). Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunology, 14, 500–508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Singleton, K. D., Beckey, V. E., & Wischmeyer, P. E. (2005a). Glutamine prevents activation of NF-kappaB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock, 24, 583–589.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, K. D., Serkova, N., Banerjee, A., Meng, X., Gamboni-Robertson, F., & Wischmeyer, P. E. (2005b). Glutamine attenuates endotoxin-induced lung metabolic dysfunction: Potential role of enhanced heat shock protein 70. Nutrition, 21, 214–223.

    Article  CAS  PubMed  Google Scholar 

  • Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003). Interpreting correlations in metabolomic networks. Biochemical Society Transactions, 31, 1476–1478.

    Article  CAS  PubMed  Google Scholar 

  • Tannahill, G. M., Curtis, A. M., Adamik, J., Palsson-Mcdermott, E. M., McGettrick, A. F., Goel, G., et al. (2013). Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha. Nature, 496, 238–242.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Trujillo, E., Davis, C., & Milner, J. (2006). Nutrigenomics, proteomics, metabolomics, and the practice of dietetics. Journal of the American Dietetic Association, 106, 403–413.

    Article  CAS  PubMed  Google Scholar 

  • Ubhi, B. K., Riley, J. H., Shaw, P. A., Lomas, D. A., Tal-Singer, R., Macnee, W., et al. (2012). Metabolic profiling detects biomarkers of protein degradation in COPD patients. European Respiratory Journal, 40, 345–355.

    Article  CAS  PubMed  Google Scholar 

  • Urbanczyk-Wochniak, E., Luedemann, A., Kopka, J., Selbig, J., Roessner-Tunali, U., Willmitzer, L., & Fernie, A. R. (2003). Parallel analysis of transcript and metabolic profiles: A new approach in systems biology. EMBO Reports, 4, 989–993.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vekic, J., Zeljkovic, A., Jelic-Ivanovic, Z., Spasojevic-Kalimanovska, V., Spasic, S., Videnovic-Ivanov, J., et al. (2013). Distribution of low-density lipoprotein and high-density lipoprotein subclasses in patients with sarcoidosis. Archives of Pathology and Laboratory Medicine, 137, 1780–1787.

    Article  CAS  PubMed  Google Scholar 

  • Wang, R., Dillon, C. P., Shi, L. Z., Milasta, S., Carter, R., Finkelstein, D., et al. (2011a). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity, 35, 871–882.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, Z., Klipfell, E., Bennett, B. J., Koeth, R., Levison, B. S., Dugar, B., et al. (2011b). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature, 472, 57–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang, H., Tso, V. K., Slupsky, C. M., & Fedorak, R. N. (2010). Metabolomics and detection of colorectal cancer in humans: A systematic review. Future Oncology, 6, 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg, S. E., & Chandel, N. S. (2014). Futility sustains memory T cells. Immunity, 41, 1–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wellen, K. E., Hatzivassiliou, G., Sachdeva, U. M., Bui, T. V., Cross, J. R., & Thompson, C. B. (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science, 324, 1076–1080.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wen, H., Yang, H. J., An, Y. J., Kim, J. M., Lee, D. H., Jin, X., et al. (2013). Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies. Molecular and Cellular Proteomics, 12, 575–586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wischmeyer, P. E., Jayakar, D., Williams, U., Singleton, K. D., Riehm, J., Bacha, E. A., et al. (2003). Single dose of glutamine enhances myocardial tissue metabolism, glutathione content, and improves myocardial function after ischemia-reperfusion injury. JPEN. Journal of Parenteral and Enteral Nutrition, 27, 396–403.

    Article  CAS  PubMed  Google Scholar 

  • Xia, J., & Wishart, D. S. (2011a). Metabolomic data processing, analysis, and interpretation using MetaboAnalyst. Current Protocols in Bioinformatics, Chapter 14, Unit 14 10.

  • Xia, J., & Wishart, D. S. (2011b). Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nature Protocols, 6, 743–760.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Medicine and the Center for Molecular Medicine and Genetics, Wayne State University School of Medicine (LS) and National Institute of Health R01HL113508 (LS).

Author contribution

AG contributed to the study design, participated in sample collection, conducted the analysis, interpreted the data and drafted the manuscript. SVG provided access and contributed to multivariate data analysis, as well as assisted with the preparation of the manuscript. CB participated in data interpretation and preparation of the manuscript. LS designed the study, and participated in all areas of the research, data analysis and writing of the manuscript. All authors have read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lobelia Samavati.

Ethics declarations

Conflict of interest

AG, SVG, CB, and LS declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geamanu, A., Gupta, S.V., Bauerfeld, C. et al. Metabolomics connects aberrant bioenergetic, transmethylation, and gut microbiota in sarcoidosis. Metabolomics 12, 35 (2016). https://doi.org/10.1007/s11306-015-0932-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-015-0932-2

Keywords

Navigation