Skip to main content
Log in

A quantitative 1H NMR approach for evaluating the metabolic response of Saccharomyces cerevisiae to mild heat stress

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Effect of growth temperature on the yeast (Saccharomyces cerevisiae) metabolome has been analysed by one-dimensional proton NMR spectroscopy (1H NMR). Potential biomarkers have been first identified by a non-targeted chemometric evaluation of the spectra, followed by a comprehensive analysis of bayesian estimated concentrations of target metabolites in extracts of cells growth either at 30 or 37 °C. Tentative identification of metabolites whose concentrations were affected by this mild heat-shock stress was attempted by partial least squares-discriminant analysis (PLS-DA) on 1H NMR data, combined with Statistical TOtal Correlation SpectroscopY, and further confirmed with empirical data. An extensive assignment for most of the detected NMR signals was performed, with a total number of 38 identified metabolites. Concentrations estimated using automatic BATMAN modelling revealed that bayesian integration is a sufficient approach for obtaining relevant concentration changes of metabolites and biological information of interest. In contrast to when it is applied directly on spectral data, the application of PLS-DA on BATMAN recovered metabolite concentration estimates allowed for a better overview of the investigated samples, since more metabolites were highlighted in the discriminatory model. Observed changes in metabolite concentrations were consistent with the expected process of temperature acclimation, showing alterations in amino acid cellular pools, nucleotide metabolism and lipid composition. The strategy described in this work can thus be proposed as a powerful and easy tool to investigate complex biological processes, from biomarker screening and discovery to the study of metabolite network changes in biological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arthur, H., & Watson, K. (1976). Thermal adaptation in yeast: Growth temperatures, membrane lipid, and cytochrome composition of psychrophilic, mesophilic, and thermophilic yeasts. Journal of Bacteriology, 128, 56–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astle, W., De Iorio, M., Richardson, S., Stephens, D., & Ebbels, T. (2012). A Bayesian model of NMR spectra for the deconvolution and quantification of metabolites in complex biological mixtures. Journal of American Statistical Association, 107, 1259–1271. doi:10.1080/01621459.2012.695661.

    Article  CAS  Google Scholar 

  • Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17, 166–173. doi:10.1002/cem.785.

    Article  CAS  Google Scholar 

  • Barnett, J. A., Payne, R. W., & Yarrow, D. (2000). Yeasts: Characteristics and identification (3rd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Bro, R., & Smilde, A. K. (2014). Principal component analysis. Analytical Methods, 6, 2812–2831. doi:10.1039/C3AY41907J.

    Article  CAS  Google Scholar 

  • Chong, I.-G., & Jun, C.-H. (2005). Performance of some variable selection methods when multicollinearity is present. Chemometrics and Intelligent Laboratory Systems, 78, 103–112. doi:10.1016/j.chemolab.2004.12.011.

    Article  CAS  Google Scholar 

  • Cloarec, O., Dumas, M.-E., Craig, A., et al. (2005). Statistical total correlation spectroscopy: An exploratory approach for latent biomarker identification from metabolic 1H NMR data sets. Analytical Chemistry, 77, 1282–1289. doi:10.1021/ac048630x.

    Article  CAS  PubMed  Google Scholar 

  • Core Team, R. (2013). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78. doi:10.1002/mas.20108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong, J., Cheng, K.-K., Xu, J., Chen, Z., & Griffin, J. L. (2011). Group aggregating normalization method for the preprocessing of NMR-based metabolomic data. Chemometrics and Intelligent Laboratory Systems, 108, 123–132. doi:10.1016/j.chemolab.2011.06.002.

    Article  CAS  Google Scholar 

  • Dunn, W. B., Bailey, N. J. C., & Johnson, H. E. (2005). Measuring the metabolome: Current analytical technologies. Analyst, 130, 606–625. doi:10.1039/B418288J.

    Article  CAS  PubMed  Google Scholar 

  • Elbein, A. D., Pan, Y. T., Pastuszak, I., & Carroll, D. (2003). New insights on trehalose: A multifunctional molecule. Glycobiology, 13, 17R–27R. doi:10.1093/glycob/cwg047.

    Article  CAS  PubMed  Google Scholar 

  • Estruch, F. (2000). Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiology Reviews, 24, 469–486. doi:10.1111/j.1574-6976.2000.tb00551.x.

    Article  CAS  PubMed  Google Scholar 

  • Farrés, M., Piña, B., & Tauler, R. (2015). Chemometric evaluation of Saccharomyces cerevisiae metabolic profiles using LC–MS. Metabolomics, 11, 210–224. doi:10.1007/s11306-014-0689-z.

    Article  PubMed  Google Scholar 

  • Geladi, P., & Kowalski, B. R. (1986). Partial least-squares regression: A tutorial. Analytica Chimica Acta, 185, 1–17. doi:10.1016/0003-2670(86)80028-9.

    Article  CAS  Google Scholar 

  • German, J. B., Hammock, B., & Watkins, S. (2005). Metabolomics: building on a century of biochemistry to guide human health. Metabolomics, 1, 3–9. doi:10.1007/s11306-005-1102-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin, J. L. (2003). Metabonomics: NMR spectroscopy and pattern recognition analysis of body fluids and tissues for characterisation of xenobiotic toxicity and disease diagnosis. Current Opinion in Chemical Biology, 7, 648–654.

    Article  CAS  PubMed  Google Scholar 

  • Hahn, S., & Young, E. T. (2011). Transcriptional regulation in Saccharomyces cerevisiae: Transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics, 189, 705–736. doi:10.1534/genetics.111.127019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao, J., Astle, W., De Iorio, M., & Ebbels, T. M. D. (2012). BATMAN—an R package for the automated quantification of metabolites from nuclear magnetic resonance spectra using a Bayesian model. Bioinformatics, 28, 2088–2090. doi:10.1093/bioinformatics/bts308.

    Article  CAS  PubMed  Google Scholar 

  • Hao, J., Liebeke, M., Astle, W., De Iorio, M., Bundy, J. G., & Ebbels, T. M. D. (2014). Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN. Nature Protocols, 9, 1416–1427. doi:10.1038/nprot.2014.090.

    Article  CAS  PubMed  Google Scholar 

  • Hinnebusch, A. G. (2005). Translational regulation of GCN4 and the general amino acid control of yeast. Annual Review of Microbiology, 59, 407–450. doi:10.1146/annurev.micro.59.031805.133833.

    Article  CAS  PubMed  Google Scholar 

  • Højer-Pedersen, J., Smedsgaard, J., & Nielsen, J. (2008). The yeast metabolome addressed by electrospray ionization mass spectrometry: Initiation of a mass spectral library and its applications for metabolic footprinting by direct infusion mass spectrometry. Metabolomics, 4, 393–405. doi:10.1007/s11306-008-0132-4.

    Article  Google Scholar 

  • Jewison, T., Knox, C., Neveu, V., et al. (2012). YMDB: The yeast metabolome database. Nucleic Acids Research, 40, D815–D820. doi:10.1093/nar/gkr916.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109–D114. doi:10.1093/nar/gkr988.

    Article  CAS  PubMed  Google Scholar 

  • Kang, W. Y., Kim, S. H., & Chae, Y. K. (2012). Stress adaptation of Saccharomyces cerevisiae as monitored via metabolites using two-dimensional NMR spectroscopy. FEMS Yeast Research, 12, 608–616.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Wang, J., Lu, Z., Wei, D., Yang, M., & Kong, L. (2014). NMR-based metabolomics approach to study the toxicity of lambda-cyhalothrin to goldfish (Carassius auratus). Aquatic Toxicology, 146, 82–92. doi:10.1016/j.aquatox.2013.10.024.

    Article  PubMed  Google Scholar 

  • Mazzei, P., Spaccini, R., Francesca, N., Moschetti, G., & Piccolo, A. (2013). Metabolomic by 1H NMR spectroscopy differentiates “Fiano di Avellino” white wines obtained with different yeast strains. Journal of Agriculture and Food Chemistry, 61, 10816–10822.

    Article  CAS  Google Scholar 

  • McConnell, S. J., Stewart, L. C., Talin, A., & Yaffe, M. P. (1990). Temperature-sensitive yeast mutants defective in mitochondrial inheritance. Journal of Cell Biology, 111, 967–976. doi:10.1083/jcb.111.3.967.

    Article  CAS  PubMed  Google Scholar 

  • Mensonides, F. I. C., Hellingwerf, K. J., de Mattos, M. J. T., & Brul, S. (2013). Multiphasic adaptation of the transcriptome of Saccharomyces cerevisiae to heat stress. Food Research International, 54, 1103–1112. doi:10.1016/j.foodres.2012.12.042.

    Article  CAS  Google Scholar 

  • Nonklang, S., Abdel-Banat, B. M. A., Cha-aim, K., et al. (2008). High-temperature ethanol fermentation and transformation with linear DNA in the thermotolerant yeast Kluyveromyces marxianus DMKU3-1042. Applied and Environment Microbiology, 74, 7514–7521. doi:10.1128/aem.01854-08.

    Article  CAS  Google Scholar 

  • Onodera, J., & Ohsumi, Y. (2005). Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. Journal of Biological Chemistry, 280, 31582–31586. doi:10.1074/jbc.M506736200.

    Article  CAS  PubMed  Google Scholar 

  • Palomino-Schätzlein, M., Molina-Navarro, M., Tormos-Pérez, M., Rodríguez-Navarro, S., & Pineda-Lucena, A. (2013). Optimised protocols for the metabolic profiling of S. cerevisiae by 1H-NMR and HRMAS spectroscopy. Analytical and Bioanalytical Chemistry, 405, 8431–8441.

    Article  PubMed  Google Scholar 

  • Racker, E. (1949). Aldehyde dehydrogenase, a diphosphopyridine nucleotide-linked enzyme. Journal of Biological Chemistry, 177, 883–892.

    CAS  PubMed  Google Scholar 

  • Sakamoto, T., & Murata, N. (2002). Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Current Opinion in Microbiology, 5, 206–210. doi:10.1016/S1369-5274(02)00306-5.

    Article  CAS  Google Scholar 

  • Strassburg, K., Walther, D., Takahashi, H., Kanaya, S., & Kopka, J. (2010). Dynamic transcriptional and metabolic responses in yeast adapting to temperature stress. OMICS: A Journal of Integrative Biology, 14, 249–259. doi:10.1089/omi.2009.0107.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki, K. (2013). Selective autophagy in budding yeast. Cell Death and Differentiation, 20, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Torija, M. J., Beltran, G., Novo, M., et al. (2003). Effects of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. International Journal of Food Microbiology, 85, 127–136. doi:10.1016/S0168-1605(02)00506-8.

    Article  CAS  PubMed  Google Scholar 

  • Wishart, D. S., Jewison, T., Guo, A. C., et al. (2013). HMDB 3.0—The human metabolome database in 2013. Nucleic Acids Research, 41, D801–D807. doi:10.1093/nar/gks1065.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Antti, H., Lindgren, F., & Öhman, J. (1998). Orthogonal signal correction of near-infrared spectra. Chemometrics and Intelligent Laboratory Systems, 44, 175–185. doi:10.1016/S0169-7439(98)00109-9.

    Article  CAS  Google Scholar 

  • Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130. doi:10.1016/S0169-7439(01)00155-1.

    Article  CAS  Google Scholar 

  • Wolfender, J.-L., Queiroz, E. F., & Hostettmann, K. (2005). Phytochemistry in the microgram domain—a LC–NMR perspective. Magnetic Resonance in Chemistry, 43, 697–709. doi:10.1002/mrc.1631.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, C., Zhang, S., Ragg, S., Raftery, D., & Vitek, O. (2011). Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics, 27, 1637–1644. doi:10.1093/bioinformatics/btr118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement No. 320737.

Conflict of interest

Francesc Puig-Castellví, Ignacio Alfonso, Benjamí Piña, and Romà Tauler declare that they have no conflict of interest.

Ethical standard

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romà Tauler.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig-Castellví, F., Alfonso, I., Piña, B. et al. A quantitative 1H NMR approach for evaluating the metabolic response of Saccharomyces cerevisiae to mild heat stress. Metabolomics 11, 1612–1625 (2015). https://doi.org/10.1007/s11306-015-0812-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-015-0812-9

Keywords

Navigation