Skip to main content
Log in

MetaboNexus: an interactive platform for integrated metabolomics analysis

  • Software/Database Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

MetaboNexus is an interactive metabolomics data analysis platform that integrates pre-processing of raw peak data with in-depth statistical analysis and metabolite identity search. It is designed to work as a desktop application hence uploading large files to web servers is not required. This could speed up the data analysis process because server queries or queues are avoided, while ensuring security of confidential clinical data on a local computer. With MetaboNexus, users can progressively start from data pre-processing, multi- and univariate analysis to metabolite identity search of significant molecular features, thereby seamlessly integrating critical steps for metabolite biomarker discovery. Data exploration can be first performed using principal components analysis, while prediction and variable importance can be calculated using partial least squares-discriminant analysis and Random Forest. After identifying putative features from multi- and univariate analyses (e.g. t test, ANOVA, Mann–Whitney U test and Kruskal–Wallis test), users can seamlessly determine the molecular identity of these putative features. To assist users in data interpretation, MetaboNexus also automatically generates graphical outputs, such as score plots, diagnostic plots, boxplots, receiver operating characteristic plots and heatmaps. The metabolite search function will match the mass spectrometric peak data to three major metabolite repositories, namely HMDB, MassBank and METLIN, using a comprehensive range of molecular adducts. Biological pathways can also be searched within MetaboNexus. MetaboNexus is available with installation guide and tutorial at http://www.sph.nus.edu.sg/index.php/research-services/research-centres/ceohr/metabonexus, and is meant for the Windows Operating System, XP and onwards (preferably on 64-bit). In summary, MetaboNexus is a desktop-based platform that seamlessly integrates the entire data analytical workflow and further provides the putative identities of mass spectrometric data peaks by matching them to databases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baker, S. G. (2003). The central role of receiver operating characteristic (ROC) curves in evaluating tests for the early detection of cancer. Journal of the National Cancer Institute, 95, 511–515.

    Article  PubMed  Google Scholar 

  • Breiman, L. E. O. (2002). Random forests. R News, 2(3), 5–32.

    Google Scholar 

  • Chen, F., Koufaty, D. A. & Zhang, X. (2009) Understanding intrinsic characteristics and system implications of flash memory based solid state drives. Proceedings of the eleventh international joint conference on Measurement and modeling of computer systems, 181–192.

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273–297.

    Google Scholar 

  • Dr Hochmuth Scientific Consulting, http://massfinder.com/wiki/MassFinder_4. Accessed 26 Feb 2014.

  • Frolkis, A., et al. (2010). SMPDB: The Small Molecule Pathway Database. Nucleic Acids Research, 38, D480–D487.

    Article  CAS  PubMed  Google Scholar 

  • Horai, H., et al. (2010). MassBank: A public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45, 703–714.

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., & Tanabe, M. (2012). KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Research, 40, D109–D114.

    Article  CAS  PubMed  Google Scholar 

  • Katajamaa, M., Miettinen, J., & Orešič, M. (2006). MZmine: Toolbox for processing and visualization of mass spectrometry based molecular profile data. Bioinformatics, 22, 634–636.

    Article  CAS  PubMed  Google Scholar 

  • Kessler, N., et al. (2013). MeltDB 2.0—advances of the metabolomics software system. Bioinformatics, 29, 2452–2459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liaw, A., & Wiener, M. (2002). Classification and regression by randomForest. R News, 2, 18–22.

    Google Scholar 

  • Luedemann, A., Strassburg, K., Erban, A., & Kopka, J. (2008). TagFinder for the quantitative analysis of gas chromatography–mass spectrometry (GC–MS)-based metabolite profiling experiments. Bioinformatics, 24, 732–737.

    Article  CAS  PubMed  Google Scholar 

  • Patti, G. J., Tautenhahn, R., & Siuzdak, G. (2012). Meta-analysis of untargeted metabolomic data from multiple profiling experiments. Nature Protocols, 7, 508–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saghatelian, A., Trauger, S. A., Want, E. J., Hawkins, E. G., Siuzdak, G., & Cravatt, B. F. (2004) Assignment of endogenous substrates to enzymes by global metabolite profiling. Biochemistry, 43, 14332–14339.

    Article  Google Scholar 

  • Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9, 504.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tautenhahn, R., Patti, G. J., Rinehart, D., & Siuzdak, G. (2012a). XCMS Online: A web-based platform to process untargeted metabolomic data. Analytical Chemistry, 84, 5035–5039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautenhahn, R., et al. (2012b). An accelerated workflow for untargeted metabolomics using the METLIN database. Nature Biotechnology, 30, 826–828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Team, R. D. C. (2005). R: A language and environment for statistical computing. Vienna: R Found Statistics Computing.

    Google Scholar 

  • Tomita, M., Kawakami, M., Soga, T., Robert, M., & Sugimoto, M. (2012). Bioinformatics tools for mass spectroscopy-based metabolomic data processing and analysis. Current Bioinformatics, 7, 96–108.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wishart, D. S., et al. (2009). HMDB: A knowledgebase for the human metabolome. Nucleic Acids Research, 37, D603–D610.

    Article  CAS  PubMed  Google Scholar 

  • Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2, 37–52.

    Article  CAS  Google Scholar 

  • Wold, S., & Sjostrom, M. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58, 109–130.

    Article  CAS  Google Scholar 

  • Xia, J., Mandal, R., Sinelnikov, I. V., Broadhurst, D., & Wishart, D. S. (2012). MetaboAnalyst 2.0—a comprehensive server for metabolomic data analysis. Nucleic Acids Research, 40, W127–W133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

SM Huang was supported by an NUS Research Scholarship. We thank the Singapore National Medical Research Council (NMRC 1242/2009 WBS R-608-000-034-213) and the NUS Environmental Research Institute (NERI) for the support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choon Nam Ong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, SM., Toh, W., Benke, P.I. et al. MetaboNexus: an interactive platform for integrated metabolomics analysis. Metabolomics 10, 1084–1093 (2014). https://doi.org/10.1007/s11306-014-0648-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0648-8

Keywords

Navigation