Skip to main content
Log in

Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Many metabolites in plant are highly polar and ionic. Their analysis using gas chromatography–mass spectrometry and liquid chromatography–mass spectrometry can be problematic. Therefore a capillary electrophoresis–mass spectrometry (CE–MS) method with charge-driven separation characteristic was developed to investigate polar metabolites in tobacco. To obtain as many features as possible, extraction of polar metabolites was optimized by the design of experiments and evaluated by univariate statistics. Method validation was carried out to evaluate the analytical characteristics including calibration curve, precision, sample stability and extraction reproducibility. The developed method was successfully applied in studying 30 tobacco leaves obtained from Yunnan and Guizhou provinces in China. A total of 154 polar metabolites were identified based on available database. Multivariate pattern recognition clearly revealed the metabolic differences between the two geographic areas and 43 significantly different metabolites were defined by the non-parametric hypothesis test (Mann–Whitney U test) and false discovery rate. Some key metabolites involved in photosynthesis such as ribulose 1,5-disphosphate, fructose 1,6-diphosphate, glycine, betaine, GABA and serine were found to be susceptible to environmental conditions. This study shows that the metabolic profiling based on CE–MS can clearly discriminate tobacco leaves of different geographical origins and understand the relationship between plant metabolites and their geographical origins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alan, M. K., & Frank, J. T. (2000). Gamma aminobutyric acid (GABA) and plant responses to stress. Critical Reviews in Plant Sciences, 19(6), 479–509.

    Article  Google Scholar 

  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(1), 289–300.

  • Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. The Annals of Statistics, 29(4), 1165–1188.

    Article  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8), 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Bouché, N., & Fromm, H. (2004). GABA in plants: Just a metabolite? Trends in Plant Science, 9(3), 110–115.

    Article  PubMed  Google Scholar 

  • Cazier, J. B., Kaisaki, P. J., Argoud, K., Blaise, B. J., Veselkov, K., Ebbels, T. M., et al. (2011). Untargeted metabolome quantitative trait locus mapping associates variation in urine glycerate to mutant glycerate kinase. Journal of Proteome Research, 11(2), 631–642.

    Article  PubMed  Google Scholar 

  • Cruz, J. A., Emery, C., Wüst, M., Kramer, D. M., & Lange, B. M. (2008). Metabolite profiling of Calvin cycle intermediates by HPLC-MS using mixed-mode stationary phases. The Plant Journal: For Cell and Molecular Biology, 55(6), 1047–1060.

    Article  CAS  Google Scholar 

  • De Vos, R. C., Moco, S., Lommen, A., Keurentjes, J. J., Bino, R. J., & Hall, R. D. (2007). Untargeted large-scale plant metabolomics using liquid chromatography coupled to mass spectrometry. Nature Protocols, 2(4), 778–791.

    Article  PubMed  Google Scholar 

  • Decaestecker, T. N., Lambert, W. E., Van Peteghem, C. H., Deforce, D., & Van Bocxlaer, J. F. (2004). Optimization of solid-phase extraction for a liquid chromatographic–tandem mass spectrometric general unknown screening procedure by means of computational techniques. Journal of Chromatography A, 1056(1–2), 57–65.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, S. L., Bruns, R. E., da Silva, E. G., Dos Santos, W. N., Quintella, C. M., David, J. M., et al. (2007). Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatography A, 1158(1–2), 2–14.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000a). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72(15), 3573–3580.

    Article  CAS  PubMed  Google Scholar 

  • Fiehn, O., Kopka, J., Dörmann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000b). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18(11), 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., Parry, M., & Noctor, G. (2003). Markers and signals associated with nitrogen assimilation in higher plants. Journal of Experimental Botany, 54(382), 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, K., Harrison, S. J., Lane, G. A., Otte, D. E., Hemar, Y., Quek, S. Y., et al. (2012). Non-targeted analysis of tea by hydrophilic interaction liquid chromatography and high resolution mass spectrometry. Food Chemistry, 134(3), 1616–1623.

    Article  CAS  PubMed  Google Scholar 

  • Gao, W., Yang, H., Qi, L. W., Liu, E. H., Ren, M. T., Yan, Y. T., et al. (2012). Unbiased metabolite profiling by liquid chromatography-quadrupole time-of-flight mass spectrometry and multivariate data analysis for herbal authentication: Classification of seven Lonicera species flower buds. Journal of Chromatography A, 1245, 109–116.

    Article  CAS  PubMed  Google Scholar 

  • Garcia, L. M. Z., de Oliveira, T. F., Soares, P. K., Bruns, R. E., & Scarminio, I. S. (2010). Statistical mixture design—principal component determination of synergic solvent interactions for natural product extractions. Chemometrics and Intelligent Laboratory Systems, 103(1), 1–7.

    Article  CAS  Google Scholar 

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anaytical Biochemistry, 331(2), 283–295.

    Article  CAS  Google Scholar 

  • Hasunuma, T., Harada, K., Miyazawa, S., Kondo, A., Fukusaki, E., & Miyake, C. (2010). Metabolic turnover analysis by a combination of in vivo 13C-labelling from 13CO2 and metabolic profiling with CE–MS/MS reveals rate-limiting steps of the C3 photosynthetic pathway in Nicotiana tabacum leaves. Journal of Experimental Botany, 61(4), 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  • Hirayama, A., Kami, K., Suqimoto, M., Suqawara, M., Toki, N., Onozuka, H., et al. (2009). Quantitative metabolome profiling of colon and stomach cancer microenvironment by capillary electrophoresis time-of-flight mass spectrometry. Cancer Research, 69(11), 4918–4925.

    Article  CAS  PubMed  Google Scholar 

  • Holmström, K. O., Somersalo, S., Mandal, A., Palva, T. E., & Welin, B. (2000). Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany, 51(343), 177–185.

    Article  PubMed  Google Scholar 

  • Krapp, A., Quick, W. P., & Stitt, M. (1991). Ribulose—1,5-bisphosphate carbo xylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta, 186(1), 58–69.

    Article  CAS  PubMed  Google Scholar 

  • Leffingwell, J. C. (1999). Leaf chemistry: Basic chemical constituents of tobacco leaf and differences among tobacco type. In D. L. Davis & M. T. Nielsen (Eds.), Tobacco: Production, chemistry and technology (pp. 304–312). Oxford: Blackwell Science.

    Google Scholar 

  • Levandi, T., Leon, C., Kaljurand, M., Garcia-Cañas, V., & Cifuentes, A. (2008). Capillary electrophoresis time-of-flight mass spectrometry for comparative metabolomics of transgenic versus conventional maize. Analytical Chemistry, 80(16), 6329–6335.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Xu, Z., Lu, X., Yang, X., Yin, P., Kong, H., et al. (2009). Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for metabonomics: Biomarker discovery for diabetes mellitus. Analytica Chimica Acta, 633(2), 257–262.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Pang, T., Li, Y., Wang, X., Li, Q., Lu, X., et al. (2011). Gas chromatography-mass spectrometric method for metabolic profiling of tobacco leaves. Journal of Separation Science, 34(12), 1447–1454.

    Article  CAS  PubMed  Google Scholar 

  • Masson, P., Alves, A. C., Ebbels, T. M., Nicholson, J. K., & Want, E. J. (2010). Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS. Analytical Chemistry, 82(18), 7779–7786.

    Article  CAS  PubMed  Google Scholar 

  • Pang, T., Bai, C., Xu, Y., Xu, G., Yuan, Z., Su, Y., et al. (2006). Determination of sugars in tobacco leaf by HPLC with evaporative light scattering detection. Journal of Liquid Chromatography & Related Technologies, 29(9), 1281–1289.

    Article  CAS  Google Scholar 

  • Ramautar, R., Somsen, G. W., & de Jong, G. J. (2009). CE–MS in metabolomics. Electrophoresis, 30(1), 276–291.

    Article  CAS  PubMed  Google Scholar 

  • Ramautar, R., Somsen, G. W., & de Jong, G. J. (2013). CE–MS for metabolomics: Developments and applications in the period 2010–2012. Electrophoresis, 34(1), 86–98.

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer, C., Lisec, J., Czedik-Eysenberg, A., Sulpice, R., Flis, A., Grieder, C., et al. (2012). Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proceedings of the National Academy of Sciences, 109(23), 8872–8877.

    Article  CAS  Google Scholar 

  • Rodgers, J. L., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66.

    Article  Google Scholar 

  • Rodríguez, R., Mañes, J., & Picó, Y. (2003). Off-Line solid-phase microextraction and capillary electrophoresis mass spectrometry to determine acidic pesticides in fruits. Analytical Chemistry, 75(3), 452–459.

    Article  PubMed  Google Scholar 

  • Saric, J., Want, E. J., Duthaler, U., Lewis, M., Keiser, J., Shockcor, J. P., et al. (2012). Systematic evaluation of extraction methods for multiplatform-based metabotyping: application to the fasciola hepatica metabolome. Analytical Chemistry, 84(16), 6963–6972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato, S., Soga, T., Nishioka, T., & Tomita, M. (2004). Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. The Plant Jounal, 40(1), 151–163.

    Article  CAS  Google Scholar 

  • Scherling, C., Roscher, C., Giavalisco, P., Schulze, E.-D., & Weckwerth, W. (2010). Metabolomics unravel contrasting effects of biodiversity on the performance of individual plant species. PLoS ONE,. doi:10.1371/journal.pone.0012569.

    PubMed  PubMed Central  Google Scholar 

  • Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132(2), 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T. (2000). Amino acid analysis by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 72(6), 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., Ueno, Y., Naraoka, H., Ohashi, Y., Tomita, M., & Nishioka, T. (2002). Simultaneous determination of anionic intermediates for metabolic pathways by capillary electrophoresis electrospray ionization mass spectrometry. Analytical Chemistry, 74(10), 2233–2239.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., Ishikawa, T., Igarashi, S., Sugawara, K., Kakazu, Y., & Tomita, M. (2007). Analysis of nucleotides by pressure-assisted capillary electrophoresis–mass spectrometry using silanol mask technique. Journal of Chromatography A, 1159(1–2), 125–133.

    Article  CAS  PubMed  Google Scholar 

  • Soga, T., Igarashi, K., Ito, C., Mizobuchi, K., Zimmermann, H. P., & Tomita, M. (2009). Metabolomic profiling of anionic metabolites by capillary electrophoresis mass spectrometry. Analytical Chemistry, 81(15), 6165–6174.

    Article  CAS  PubMed  Google Scholar 

  • Spagou, K., Wilson, I. D., Masson, P., Theodoridis, G., Raikos, N., Coen, M., et al. (2010). HILIC-UPLC-MS for exploratory urinary metabolic profiling in toxicological studies. Analytical Chemistry, 83(1), 382–390.

    Article  PubMed  Google Scholar 

  • Stedman, R. L. (1968). Chemical composition of tobacco and tobacco smoke. Chemical Reviews, 68(2), 153–207.

    Article  CAS  PubMed  Google Scholar 

  • Steuer, R., Morgenthal, K., Weckwerth, W., & Selbig, J. (2007). A gentle guide to the analysis of metabolomic data. In W. Weckwerth (Ed.), Metabolomics: Methods and protocols (pp. 105–126). New York: Springer.

    Chapter  Google Scholar 

  • Tawaraya, K., Horie, R., Saito, A., Shinano, T., Wagatsuma, T., Saito, K., et al. (2013). Metabolite profiling of shoot extracts, root extracts, and root exudates of rice plant under phosphorus deficiency. Journal of Plant Nutrition, 36(7), 1138–1159.

    Article  CAS  Google Scholar 

  • Tikunov, Y., Lommen, A., de Vos, C. H., Verhoeven, H. A., Bino, R. J., Hall, R. D., et al. (2005). A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vuckovic, D., Risticevic, S., & Pawliszyn, J. (2011). In vivo solid-phase microextraction in metabolomics: Opportunities for the direct investigation of biological systems. Angewandte Chemie International Edition, 50(25), 5618–5628.

    Article  CAS  PubMed  Google Scholar 

  • Xiang, G., Yang, H., Yang, L., Zhang, X., Cao, Q., & Miao, M. (2010). Multivariate statistical analysis of tobacco of different origin, grade and variety according to polyphenols and organic acids. Microchemical Journal, 95(2), 198–206.

    Article  CAS  Google Scholar 

  • Yuliana, N. D., Khatib, A., Verpoorte, R., & Choi, Y. H. (2011). Comprehensive extraction method integrated with NMR metabolomics: A new bioactivity screening method for plants, adenosine A1 receptor binding compounds in orthosiphon stamineus benth. Analytical Chemistry, 83(17), 6902–6906.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Zhang, Y., Du, Y., Chen, S., & Tang, H. (2011). Dynamic metabonomic responses of tobacco (Nicotiana tabacum) plants to salt stress. Journal of Proteome Research, 10(4), 1904–1914.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Wang, X., Guo, J., Xia, Q., Zhao, G., Zhou, H., et al. (2013). Metabolic profiling of Chinese tobacco leaf of different geographical origins by GC-MS. Journal of Agricultural and Food Chemistry, 61(11), 2597–2605.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, T., Xiao, X., & Li, G. (2012). Hybrid field-assisted solid–liquid–solid dispersive extraction for the determination of organochlorine pesticides in tobacco with gas chromatography. Analytical Chemistry, 84(1), 420–427.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guowang Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 738 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Hu, C., Zeng, J. et al. Study of polar metabolites in tobacco from different geographical origins by using capillary electrophoresis–mass spectrometry. Metabolomics 10, 805–815 (2014). https://doi.org/10.1007/s11306-014-0631-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0631-4

Keywords

Navigation