Skip to main content
Log in

Non-invasive assessment of embryonic sex in cattle by metabolic fingerprinting of in vitro culture medium

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

The objective of this work was to determine whether metabolic fingerprinting of spent bovine embryo culture media using Fourier transform infrared spectroscopy (FTIR) correlates with embryonic sex. Embryos were produced in vitro from oocytes collected from cows slaughtered in an abattoir. Day-6 embryos were individually cultured in synthetic oviduct fluid for 24 h, prior to the time (Day-7) intended for embryo transfer or cryopreservation. Culture medium was analyzed by FTIR. Embryos were sexed by a PCR procedure based on amelogenin gene amplification or transferred to a recipient and sex observed at birth. Media samples from embryos diagnosed as male (n = 47) or female (n = 70) were individually collected and evaluated using FTIR. The spectra obtained were analyzed according to metabolomic profile of embryo culture media and embryonic sex. The discrimination capability of the classifiers was assessed for accuracy, sensitivity (female), sensitivity (male) and area under the ROC curve (AUC). Performance of sex prediction (%) was high within early blastocysts + blastocysts (74.4 ± 10.2, accuracy; 0.749 ± 0.099, AUC) and excellent for expanded blastocysts (86.0 ± 12.6, accuracy; 0.898 ± 0.094, AUC). A combination of metabolomic and bioinformatic analysis provides a non-invasive mean of embryonic sex analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alvarez, R. H., Cardoso, C. R., Butzke, G., & Sousa, R. V. (2012). Bovine embryo sexing in field conditions: Efficacy of the polymerase chain reaction method and pregnancy rates in dairy herds located in the South and southeast regions of Brazil. Reproduction Fertility and Development, 25, 284–285.

    Article  Google Scholar 

  • Bermejo-Alvarez, P., Lonergan, P., Rath, D., Gutierrez-Adan, A., & Rizos, D. (2010a). Developmental kinetics and gene expression in male and female bovine embryos produced in vitro with sex-sorted spermatozoa. Reproduction Fertility and Development, 22, 426–436.

    Article  CAS  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011a). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. Reproduction, 141, 563–570.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011b). Transcriptional sexual dimorphism in elongating bovine embryos: implications for XCI and sex determination genes. Reproduction, 141, 801–808.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2008a). Can bovine in vitro-matured oocytes selectively process X- or Y-sorted sperm differentially? Biology of Reproduction, 79, 594–597.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2008b). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiological Genomics, 32, 264–272.

    Article  CAS  PubMed  Google Scholar 

  • Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2010b). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 107, 3394–3399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brison, D. R., Hollywood, K., Arnesen, R., & Goodacre, R. (2007). Predicting human embryo viability: The road to non-invasive analysis of the secretome using metabolic footprinting. Reproductive BioMedicine Online, 15, 296–302.

    Article  PubMed  Google Scholar 

  • Bromer, J. G., & Seli, E. (2008). Assessment of embryo viability in assisted reproductive technology: Shortcomings of current approaches and the emerging role of metabolomics. Current Opinion in Obstetrics and Gynecology, 20, 234–241.

    Article  PubMed  Google Scholar 

  • Díez, C., Bermejo-Alvarez, P., Trigal, B., Caamaño, J. N., Muñoz, M., Molina, I., et al. (2006). Changes in testosterone or temperature during the in vitro oocyte culture do not alter the sex ratio of bovine embryos. Ecological Genetics and Physiology, 311, 448–452.

    Google Scholar 

  • Ellis, D. I., Dunn, W. B., Griffin, J. L., Allwood, J. W., & Goodacre, R. (2007). Metabolic fingerprinting as a diagnostic tool. Pharmacogenomics, 8, 1243–1266.

    Article  CAS  PubMed  Google Scholar 

  • Ellis, D. I., & Goodacre, R. (2006). Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 131, 875–885.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, D. K., Larman, M. G., & Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Molecular Human Reproduction, 16, 539–547.

    Article  CAS  PubMed  Google Scholar 

  • Gardner, D. K., Wale, P. L., Collins, R., & Lane, M. (2011). Glucose consumption of single post-compaction human embryos is predictive of embryo sex and live birth outcome. Human Reproduction, 26, 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Gómez, E., Caamaño, J. N., Corrales, F. J., Díez, C., Correia-Álvarez, E., Martín, et al. (2013). Embryonic sex induces differential expression of proteins in bovine uterine fluid. Journal of Proteome Research, 12, 1199–1210.

    Article  PubMed  Google Scholar 

  • Goovaerts, I. G., Leroy, J. L., Jorssen, E. P., & Bols, P. E. (2010). Noninvasive bovine oocyte quality assessment: Possibilities of a single oocyte culture. Theriogenology, 74, 1509–1520.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Adan, A., Oter, M., Martinez-Madrid, B., Pintado, B., & De La Fuente, J. (2000). Differential expression of two genes located on the X chromosome between male and female in vitro-produced bovine embryos at the blastocyst stage. Molecular Reproduction and Development, 55, 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Hardarson, T., Ahlström, A., Rogberg, L., Botros, L., Hillensjö, T., Westlander, et al. (2012). Non-invasive metabolomic profiling of Day 2 and 5 embryo culture medium: A prospective randomized trial. Human Reproduction, 27, 89–96.

    Article  CAS  PubMed  Google Scholar 

  • Holm, P., Booth, P. J., Schmidt, M. H., Greve, T., & Callesen, H. (1999). High bovine blastocyst development in a static in vitro production system using SOFaa medium supplemented with sodium citrate and myo-inositol with or without serum-proteins. Theriogenology, 52, 683–700.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, K., Iwata, H., & Thompson, J. G. (2008). The effect of glucosamine concentration on the development and sex ratio of bovine embryos. Animal Reproduction Science, 103, 228–238.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, K., Spate, L. D., Green, M. P., & Roberts, R. M. (2005). Effects of d-glucose concentration, d-fructose, and inhibitors of enzymes of the pentose phosphate pathway on the development and sex ratio of bovine blastocysts. Molecular Reproduction and Development, 72, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Laguna-Barraza, R., Bermejo-Álvarez, P., Ramos-Ibeas, P., de Frutos, C., López-Cardona, A. P., Calle, A., et al. (2012). Sex-specific embryonic origin of postnatal phenotypic variability. Reproduction Fertility and Development, 25, 38–47.

    Article  CAS  Google Scholar 

  • Lu, K. H., Cran, D. G., & Seidel, G. E, Jr. (1999). In vitro fertilization with flow-cytometrically-sorted bovine sperm. Theriogenology, 52, 1393–1405.

    Article  CAS  PubMed  Google Scholar 

  • Machado, G. M., Carvalho, J. O., Filho, E. S., Caixeta, E. S., Franco, M. M., Rumpf, R., et al. (2009). Effect of Percoll volume, duration and force of centrifugation, on in vitro production and sex ratio of bovine embryos. Theriogenology, 71, 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  • Mapletoft, R. J., & Hasler, J. F. (2005). Assisted reproductive technologies in cattle: A review. Revue Scientifique et Technique, 24, 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Mittwoch, U. (2004). The elusive action of sex-determining genes: Mitochondria to the rescue? Journal of Theoretical Biology, 228, 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz, M., Corrales, F. J., Caamaño, J. N., Díez, C., Trigal, B., Mora, M. I., et al. (2012). Proteome of the early embryo-maternal dialogue in the cattle uterus. Journal of Proteome Research, 11, 751–766.

    Article  PubMed  Google Scholar 

  • Nagy, Z. P., Sakkas, D., & Behr, B. (2008). Symposium: innovative techniques in human embryo viability assessment. Non-invasive assessment of embryo viability by metabolomic profiling of culture media (‘metabolomics’). Reproductive BioMedicine Online, 17, 502–507.

    Article  CAS  PubMed  Google Scholar 

  • Namekawa, S. H., Payer, B., Huynh, K. D., Jaenisch, R., & Lee, J. T. (2010). Two-step imprinted X inactivation: repeat versus genic silencing in the mouse. Molecular and Cellular Biology, 30, 3187–3205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palma, G. A., Olivier, N. S., Neumüller, C., & Sinowatz, F. (2008). Effects of sex-sorted spermatozoa on the efficiency of in vitro fertilization and ultrastructure of in vitro produced bovine blastocysts. Anatomia Histologia and Embryologia, 37, 67–73.

    CAS  Google Scholar 

  • Peippo, J., Farazmand, A., Kurkilahti, M., Markkula, M., Basru, P. K., & King, W. A. (2002). Sex-chromosome linked gene expression in in vitro produced bovine embryos. Molecular Human Reproduction, 8, 923–929.

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen, S., Block, J., Seidel, G. E, Jr, Brink, Z., McSweeney, K., Farin, P. W., et al. (2013). Pregnancy rates of lactating cows after transfer of in vitro produced embryos using X-sorted sperm. Theriogenology, 79, 453–461.

    Article  CAS  PubMed  Google Scholar 

  • Rubessa, M., Boccia, L., Campanile, G., Longobardi, V., Albarella, S., Tateo, A., et al. (2011). Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio. Theriogenology, 76, 1347–1355.

    Article  PubMed  Google Scholar 

  • Schenk, J. L., Suh, T. K., & Seidel, G. E, Jr. (2006). Embryo production from superovulated cattle following insemination of sexed sperm. Theriogenology, 65, 299–307.

    Article  CAS  PubMed  Google Scholar 

  • Scott, R., Seli, E., Miller, K., Sakkas, D., Scott, K., & Burns, D. H. (2008). Noninvasive metabolomic profiling of human embryo culture media using Raman spectroscopy predicts embryonic reproductive potential: A prospective blinded pilot study. Fertility and Sterility, 90, 77–83.

    Article  PubMed  Google Scholar 

  • Seli, E., Botros, L., Sakkas, D., & Burns, D. H. (2008). Noninvasive metabolomic profiling of embryo culture media using proton nuclear magnetic resonance correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility, 90, 2183–2189.

    Article  PubMed  Google Scholar 

  • Seli, E., Robert, C., & Sirard, M. A. (2010). OMICS in assisted reproduction: possibilities and pitfalls. Molecular Human Reproduction, 16, 513–530.

    Article  CAS  PubMed  Google Scholar 

  • Seli, E., Sakkas, D., Scott, R., Kwok, S. C., Rosendahl, S. M., & Burns, D. H. (2007). Noninvasive metabolomic profiling of embryo culture media using Raman and near-infrared spectroscopy correlates with reproductive potential of embryos in women undergoing in vitro fertilization. Fertility and Sterility, 88, 1350–1357.

    Article  PubMed  Google Scholar 

  • Singh, R., & Sinclair, K. D. (2007). Metabolomics: Approaches to assessing oocyte and embryo quality. Theriogenology, 68, S56–S62.

    Article  CAS  PubMed  Google Scholar 

  • Sturmey, R. G., Bermejo-Alvarez, P., Gutierrez-Adan, A., Rizos, D., Leese, H. J., & Lonergan, P. (2010). Amino acid metabolism of bovine blastocysts: A biomarker of sex and viability. Molecular Reproduction and Development, 77, 285–296.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, N., Goodacre, R., Timmins, E. M., Gaudoin, M., & Fleming, R. (2000). Fourier transform infrared spectroscopy of follicular fluids from large and small antral follicles. Human Reproduction, 15, 1667–1671.

    Article  CAS  PubMed  Google Scholar 

  • Trigal, B., Gómez, E., Caamaño, J. N., Muñoz, M., Moreno, J., Carrocera, S., et al. (2012a). In vitro and in vivo quality of bovine embryos in vitro produced with sex-sorted sperm. Theriogenology, 78, 1465–1475.

    Article  CAS  PubMed  Google Scholar 

  • Trigal, B., Gómez, E., Díez, C., Caamaño, J. N., Muñoz, M., & Moreno, J. F. (2012b). Comparative study of PCR-sexing procedures using bovine embryos fertilized with sex-sorted spermatozoa. Spanish Journal of Agricultural Research, 10, 353–359.

    Article  Google Scholar 

  • Uyar, A., & Seli, E. (2012). Embryo assessment strategies and their validation for clinical use: A critical analysis of methodology. Current Opinion in Obstetrics and Gynecology, 24, 141–150.

    Article  PubMed  Google Scholar 

  • Vergouw, C. G., Kieslinger, D. C., Kostelijk, E. H., Botros, L. L., Schats, R., Hompes, P. G., et al. (2012). Day 3 embryo selection by metabolomic profiling of culture medium with near-infrared spectroscopy as an adjunct to morphology: A randomized controlled trial. Human Reproduction, 27, 2304–2311.

    Article  CAS  PubMed  Google Scholar 

  • Wijchers, P. J., & Festenstein, R. J. (2011). Epigenetic regulation of autosomal gene expression by sex chromosomes. Trends in Genetics, 27, 132–140.

    Article  CAS  PubMed  Google Scholar 

  • Witten, I. H., & Frank, E. (2005). Data mining: Practical machine learning tools and techniques (2nd ed.). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Xu, J., Chaubal, S. A., & Du, F. (2009). Optimizing IVF with sexed sperm in cattle. Theriogenology, 71, 39–47.

    Article  CAS  PubMed  Google Scholar 

  • Xu, J., Guo, Z., Su, L., Nedambale, T. L., Zhang, J., Schenk, J., et al. (2006). Developmental potential of vitrified holstein cattle embryos fertilized in vitro with sex-sorted sperm. Journal of Dairy Science, 89, 2510–2518.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Lu, K. H., & Seidel, G. E. (2003). Development of bovine embryos after in vitro fertilization of oocytes with flow cytometrically sorted, stained and unsorted sperm from different bulls. Theriogenology, 60, 1657–1663.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank P. Bermejo-Alvarez and F. Goyache for valuable scientific comments, and JF Moreno (Sexing Technologies, Madison-Wisconsin, USA) for sexed semen donation. All institutional and national guidelines for the care and use of laboratory animals were followed.

Conflict of interest

MM, AU, EC, CD, AFG, JNC, BT, SC, ES and EG declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported.

Funding

This work was supported by the Spanish Ministry of Science and Innovation -MICINN– (AGL2009-10059). MM, EC and BT are supported by MICINN-RYC08-03454, MEC-FPU-AP2009-5265 and Cajastur, respectively. E.S. is supported by Award R01HD059909 from the National Institute of Health (NIH), USA. The authors are members of the COST Action FA1201 Epiconcept: Epigenetics and Periconception environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique Gomez.

Additional information

Marta Muñoz and Asli Uyar have contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz, M., Uyar, A., Correia, E. et al. Non-invasive assessment of embryonic sex in cattle by metabolic fingerprinting of in vitro culture medium. Metabolomics 10, 443–451 (2014). https://doi.org/10.1007/s11306-013-0587-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0587-9

Keywords

Navigation