Skip to main content
Log in

Computational annotation of plant metabolomics profiles via a novel network-assisted approach

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Mass spectrometry (MS) has become the analytical method of choice in plant metabolomics. Nevertheless, metabolite annotation remains a major challenge and implies the integration of structural searches in compound libraries with biological knowledge inferred from metabolite regulation studies. Here we propose a novel integrative approach to process and exploit the rich structural information contained in in-source fragmentation patterns of high-resolution LC–MS profiles. In this approach, a correlation matrix is first calculated from individual mass features extracted by xcms processing. Mass feature co-regulation patterns corresponding to metabolite in-source fragmentation are then detected and assembled into compound spectra using the R package CAMERA and processed for in silico fragment-based structure elucidation using MetFrag. We validate the performance of this approach for the rapid annotation of the twelve largest compound spectra, including four O-acyl sugars and six 17-hydroxygeranyllinalool diterpene glycosides in metabolic profiles of insect-attacked Nicotiana attenuata leaves. Additionally, we demonstrate the power of refining MetFrag metabolite annotations based on co-regulation patterns between known and unknown compounds in the correlation matrix and proposed structural annotations on two previously un-characterized O-acyl sugars. In summary, this novel approach facilitates compound annotation from in-source fragmentation patterns using correlation between intensities of mass features of one or several metabolites. Additionally, this analysis provides further support that insect herbivory activates major metabolic reconfigurations in N. attenuata leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen, E., Moing, A., Ebbels, T. M., Maucourt, M., Tomos, A. D., Rolin, D., et al. (2010). Correlation Network Analysis reveals a sequential reorganization of metabolic and transcriptional states during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. BMC Systems Biology, 4, 62.

    Article  PubMed  Google Scholar 

  • Allwood, J. W., & Goodacre, R. (2010). An introduction to liquid chromatography-mass spectrometry instrumentation applied in plant metabolomic analyses. Phytochemical Analysis, 21, 33–47.

    Article  PubMed  CAS  Google Scholar 

  • Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L., & Barrett, M. P. (2006). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2, 155–164.

    Article  CAS  Google Scholar 

  • Draper, J., Enot, D. P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., et al. (2009). Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ‘rules’. BMC Bioinformatics, 10, 227.

    Article  PubMed  Google Scholar 

  • Dunn WB, Erban A, Weber RJM, Creek DJ, Brown M, Breitling R, Hankemeier T, Goodacre R, Neumann S, Kopka J, Viant MR (2012) Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics. in press doi:10.1007/s11306-012-0434-4.

  • Fukushima, A., Kusano, M., Redestig, H., Arita, M., & Saito, K. (2011). Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Systems Biology, 5, 1.

    Article  PubMed  CAS  Google Scholar 

  • Gaquerel, E., Heiling, S., Schoettner, M., Zurek, G., & Baldwin, I. T. (2010). Development and validation of a liquid chromatography-electrospray ionization-time-of-flight mass spectrometry method for induced changes in Nicotiana attenuata leaves during simulated herbivory. Journal of Agriculture and Food Chemistry, 58, 9418–9427.

    Article  CAS  Google Scholar 

  • Gaquerel, E., Weinhold, A., & Baldwin, I. T. (2009). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphigidae) and its natural host Nicotiana attenuata. VIII. An unbiased GCxGC-ToFMS analysis of the plant’s elicited volatile emissions. Plant Physiology, 149, 1408–1423.

    Article  PubMed  CAS  Google Scholar 

  • Giri, A. P., Wunsche, H., Mitra, S., Zavala, J. A., Muck, A., Svatos, A., et al. (2006). Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. VII. Changes in the plant’s proteome. Plant Physiology, 142, 1621–1641.

    Article  PubMed  CAS  Google Scholar 

  • Guha, R. (2007). Chemical informatics functionality in R. Journal of Statistical Software, 18(5), 1–16.

    Google Scholar 

  • Halitschke, R., Gase, K., Hui, D., Schmidt, D. D., & Baldwin, I. T. (2003). Molecular interactions between the specialist herbivore Manduca sexta (lepidoptera, sphingidae) and its natural host Nicotiana attenuata. VI. Microarray analysis reveals that most herbivore-specific transcriptional changes are mediated by fatty acid-amino acid conjugates. Plant Physiology, 131, 1894–1902.

    Article  PubMed  CAS  Google Scholar 

  • Haug K, Salek RM, Conesa P, Hastings J, de Matos P, Rijnbeek M, Mahendraker T, Williams M, Neumann S, Rocca-Serra P, Maguire E, González-Beltrán A, Sansone SA, Griffin JL, Steinbeck C. MetaboLights—an open-access general-purpose repository for metabolomics studies and associated meta-data Nucl Acid Res (in Press).

  • Heiling, S., Schuman, M. C., Schoettner, M., Mukerjee, P., Berger, B., Schneider, B., et al. (2010). Jasmonate and ppHsystemin regulate key Malonylation steps in the biosynthesis of 17-hydroxygeranyllinalool diterpene glycosides, an abundant and effective direct defense against herbivores in Nicotiana attenuata. Plant Cell, 22, 273–292.

    Article  PubMed  CAS  Google Scholar 

  • Hill, D. W., Kertesz, T. M., Fontaine, D., Friedman, R., & Grant, D. F. (2008). Mass spectral metabonomics beyond elemental formula: chemical database querying by matching experimental with computational fragmentation spectra. Analytical Chemistry, 80, 5574–5582.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, M. Y., Klein, M., Fujikawa, Y., Yano, M., Goodenowe, D. B., Yamazaki, Y., et al. (2005). Elucidation of gene-to-gene and metabolite-to-gene networks in arabidopsis by integration of metabolomics and transcriptomics. Journal of Biological Chemistry, 280, 25590–25595.

    Article  PubMed  CAS  Google Scholar 

  • Hirai, M. Y., Yano, M., Goodenowe, D. B., Kanaya, S., Kimura, T., Awazuhara, M., et al. (2004). Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences USA, 101, 10205–10210.

    Article  CAS  Google Scholar 

  • Jourdan, F., Breitling, R., Barrett, M. P., & Gilbert, D. (2008). MetaNetter: inference and visualization of high-resolution metabolomic networks. Bioinformatics, 24, 143–145.

    Article  PubMed  CAS  Google Scholar 

  • Keinanen, M., Oldham, N. J., & Baldwin, I. T. (2001). Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. Journal of Agriculture and Food Chemistry, 49, 3553–3558.

    Article  CAS  Google Scholar 

  • Kim, S. G., Yon, F., Gaquerel, E., Gulati, J., & Baldwin, I. T. (2011). Tissue specific diurnal rhythms of metabolites and their regulation during herbivore attack in a native tobacco Nicotiana attenuata. PLoS One, 6, e26214.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234.

    Article  PubMed  Google Scholar 

  • Kuhl, C., Tautenhahn, R., Bottcher, C., Larson, T. R., & Neumann, S. (2012). CAMERA: an integrated strategy for compound spectra extraction and annotation of liquid chromatography/mass spectrometry data sets. Analytical Chemistry, 84, 283–289.

    Article  PubMed  CAS  Google Scholar 

  • Macel, M., Van Dam, N. M., & Keurentjes, J. J. (2010). Metabolomics: The chemistry between ecology and genetics. Molecular Ecology Resources, 10, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Matsuda, F., Hirai, M. Y., Sasaki, E., Akiyama, K., Yonekura-Sakakibara, K., Provart, N. J., et al. (2010). AtMetExpress development: A phytochemical atlas of Arabidopsis development. Plant Physiology, 152, 566–578.

    Article  PubMed  CAS  Google Scholar 

  • Neumann, S., & Bocker, S. (2010). Computational mass spectrometry for metabolomics: Identification of metabolites and small molecules. Analytical and Bioanalytical Chemistry, 398, 2779–2788.

    Article  PubMed  CAS  Google Scholar 

  • Onkokesung, N., Gaquerel, E., Kotkar, H., Kaur, H., Baldwin, I. T., & Galis, I. (2012). MYB8 controls inducible phenolamide levels by activating three novel hydroxycinnamoyl-coenzyme A: Polyamine transferases in Nicotiana attenuata. Plant Physiology, 158, 389–407.

    Article  PubMed  CAS  Google Scholar 

  • Rasche, F., Scheubert, K., Hufsky, F., Zichner, T., Kai, M., Svatos, A., et al. (2012). Identifying the unknowns by aligning fragmentation trees. Analytical Chemistry, 84, 3417–3426.

    Article  PubMed  CAS  Google Scholar 

  • Rasche, F., Svatos, A., Maddula, R. K., Böttcher, C., & Böcker, S. (2011). Computing fragmentation trees from tandem mass spectrometry data. Analytical Chemistry, 83, 1243–1251.

    Article  PubMed  CAS  Google Scholar 

  • Sansone, S. A., Fan, T., Goodacre, R., Griffin, J. L., Hardy, N. W., Kaddurah-Daouk, R., et al. (2007). The metabolomics standards initiative. Nature Biotechnology, 25, 846–848.

    Article  PubMed  CAS  Google Scholar 

  • Sansone, S. A., Rocca-Serra, P., Field, D., Maguire, E., Taylor, C., Hofmann, O., et al. (2012). Toward interoperable bioscience data. Nature Genetics, 44, 121–126.

    Article  PubMed  CAS  Google Scholar 

  • Schymanski, E. L., Gallampois, C. M., Krauss, M., Meringer, M., Neumann, S., Schulze, T., et al. (2012). Consensus structure elucidation combining GC/EI-MS, structure generation, and calculated properties. Analytical Chemistry, 84, 3287–3295.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13, 2498–2504.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Steinbeck, C., Han, Y., Kuhn, S., Horlacher, O., Luttmann, E., & Willighagen, E. (2003). The Chemistry Development Kit (CDK): an open-source Java library for Chemo- and Bioinformatics. Journal of Chemical Information and Computer Sciences, 43, 493–500.

    PubMed  CAS  Google Scholar 

  • Steppuhn, A., & Baldwin, I. T. (2007). Resistance management in a native plant: nicotine prevents herbivores from compensating for plant protease inhibitors. Ecology Letters, 10, 499–511.

    Article  PubMed  Google Scholar 

  • Steppuhn, A., Gase, K., Krock, B., Halitschke, R., & Baldwin, I. T. (2004). Nicotine’s defensive function in nature. PLoS Biology, 2, E217.

    Article  PubMed  Google Scholar 

  • Szymanski, J., Jozefczuk, S., Nikoloski, Z., Selbig, J., Nikiforova, V., Catchpole, G., et al. (2009). Stability of metabolic correlations under changing environmental conditions in Escherichia coli–a systems approach. PLoS ONE, 4, e7441.

    Article  PubMed  Google Scholar 

  • Weinhold, A., & Baldwin, I. T. (2011). Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences USA, 108, 7855–7859.

    Article  CAS  Google Scholar 

  • Wolf, S., Schmidt, S., Muller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11, 148.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ian T. Baldwin and Prof. Dierk Scheel for critical comments on the manuscript, Dr. Matthias Schöttner for analytical advices and for the measurement of metabolomic profiles, Sven Heiling for sharing his expertise on HGL-diterpene glycoside metabolism and Alexander Weinhold for help with the interpretation of AS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Gaquerel.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaquerel, E., Kuhl, C. & Neumann, S. Computational annotation of plant metabolomics profiles via a novel network-assisted approach. Metabolomics 9, 904–918 (2013). https://doi.org/10.1007/s11306-013-0504-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-013-0504-2

Keywords

Navigation