Skip to main content

Advertisement

Log in

A metabolomics investigation of a hyper- and hypo-virulent phenotype of Beijing lineage M. tuberculosis

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Despite a number investigations using rapid sequencing and comparative genomic techniques, attempting to characterise the phenomenon of varying degrees of virulence within the Mycobacterium tuberculosis species, the underlying causes for this still remain largely unexplained. The Beijing lineage of M. tuberculosis has received much attention due to a reported increased pathogenicity and global dissemination. In order to better understand these varying states of virulence, a GCxGC-TOFMS metabolomics research approach was used to compare the varying metabolomes of a hyper- and hypo-virulent Beijing strain of M. tuberculosis, and subsequently identify those metabolite markers differing between these strains. Multi- and univariate statistical analysis of the analysed metabolome data was used to identify those metabolites contributing most to the differences seen between the two sample groups. A general decrease in various carbohydrates, amino acids and lipids associated with cell wall structure and function, were detected in the hyper-virulent Beijing strain, comparatively. Additionally, components of mycothiol metabolism, virulence protein formation and energy production in mycobacteria, were also seen to differ when comparing the two groups. This metabolomics investigation is the first to identify the metabolite markers associated with an increased state of virulence, indicating increased metabolic activity, increased growth/replication rates, increased cell wall synthesis and an altered antioxidant mechanism, all of which would contribute to this organisms increased pathogenicity and survival ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acharya, P. V., & Goldman, D. S. (1970). Chemical composition of the cell wall of the H37Ra strain of Mycobacterium tuberculosis. Journal of Bacteriology, 102(3), 733–739.

    PubMed  CAS  Google Scholar 

  • Aguilar, D., Hanekom, M., Mata, D., Gey van Pittius, N. C., van Helden, P. D., Warren, R., et al. (2009). Mycobacterium tuberculosis strains with the Beijing genotype demonstrate variability in virulence associated with transmission. Tuberculosis, 90(5), 319–325.

    Article  Google Scholar 

  • Bifani, P. J., Mathema, B., Kurepina, N. E., & Kreiswirth, B. N. (2002). Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends in Microbiology, 10, 45–52.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P. J. (2003). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis, 83, 91–97.

    Article  PubMed  CAS  Google Scholar 

  • Brennan, P. J., & Nikaido, H. (1995). The envelope of mycobacteria. Annual Review of Biochemistry, 64, 29–63.

    Article  PubMed  CAS  Google Scholar 

  • Bryk, R., Lima, C. D., Erdjument-Bromage, H., Tempst, P., & Nathan, C. (2002). Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science, 295, 1073–1077.

    Article  PubMed  CAS  Google Scholar 

  • Buchrieser, C., & Cole, S. T. (2009). From functional genomics to systems (micro)biology. Current Opinions in Microbiology, 12(5), 528–530.

    Article  Google Scholar 

  • Chatterjee, D. (1997). The mycobacterial cell wall: Structure, biosynthesis and sites of drug action. Current Opinion in Chemical Biology, 1(4), 579–588.

    Article  PubMed  CAS  Google Scholar 

  • Chatterjee, D., & Khoo, K. H. (1998). Mycobacterial lipoarabinomannan: An extraordinary lipoheteroglycan with profound physiological effects. Glycobiology, 8(2), 113–120.

    Article  PubMed  CAS  Google Scholar 

  • Chen, I. W., & Charalampous, C. F. (1966). Biochemical studies on inositol. IX. D-Inositol 1-phosphate as intermediate in the biosynthesis of inositol from glucose 6-phosphate, and characteristics of two reactions in this biosynthesis. Journal of Biological Chemistry, 241(10), 2194–2199.

    PubMed  CAS  Google Scholar 

  • Coates, A., Hu, Y., Bax, R., & Page, C. (2002). The future challenges facing the development of new antimicrobial drugs. Nature Reviews Drug Discovery, 1(11), 895–910.

    Article  PubMed  CAS  Google Scholar 

  • Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Chucher, C., Harris, D., et al. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Natutre, 393, 537–544.

    Article  CAS  Google Scholar 

  • De Carvalho, L. P. S., Fischer, S. M., Marrero, J., Nathan, C., Ehrt, S., & Rhee, K. Y. (2010). Metabolomics of Mycobacterium tuberculosis reveals compartmentalized co-catabolism of carbon substrates. Cell, 17, 1122–1131.

    Google Scholar 

  • de Souza, G. A., Fortuin, S., Aguilar, D., Pando, R. H., McEvoy, C. R., van Helden, P. D., et al. (2010). Using a label-free proteomics method to identify differentially abundant proteins in closely related hypo- and hypervirulent clinical Mycobacterium tuberculosis Beijing isolates. Molecular and Cellular Proteomics, 9(11), 2414–2423.

    Article  PubMed  Google Scholar 

  • Deb, C., Daniel, J., Sirakova, T. D., Abomoelak, B., Dubey, V. S., & Kolattukudy, P. E. (2007). A novel lipase belonging to the hormone-sensitive lipase family induced under starvation to utilize stored triacylglycerol in Mycobacterium tuberculosis. Journal of Biological Chemistry, 281(7), 3866–3875.

    Article  Google Scholar 

  • Dormans, J., Burger, M., Aguilar, D., Hernandez-Pando, R., Kremer, K., Roholl, P., et al. (2004). Correlation of virulence, lung pathology, bacterial load and delayed type hypersensitivity responses after infection with different Mycobacterium tuberculosis genotypes in a BALB/c mouse model. Clinical and Experimental Immunology, 137, 460–468.

    Article  PubMed  CAS  Google Scholar 

  • Fiehn, O., Kopka, J., Trethewey, R. N., & Willmitzer, L. (2000). Identification of uncommon plant metabolites based on calculation of elemental compositions using gas chromatography and quadrupole mass spectrometry. Analytical Chemistry, 72, 3573–3580.

    Article  PubMed  CAS  Google Scholar 

  • Field, A. (2005). Non parametric tests. In A. Field (Ed.), Discovering statistics using SPSS (pp. 532–533). London: SAGE publications.

    Google Scholar 

  • Filliol, I., Driscoll, J. R., van Soolingen, D., Kreiswirth, B. N., Kremer, K., Valetudie, G., et al. (2003). Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. Journal of Clinical Microbiology, 41, 1963–1970.

    Article  PubMed  Google Scholar 

  • Glynn, J. R., Whiteley, J., Bifani, P. J., Kremer, K., & van Soolingen, D. (2002). Worldwide occurrence of Beijing/W strains of Mycobacterium tuberculosis: A systematic review. Emerging Infectious Diseases, 8(8), 843–849.

    Article  PubMed  Google Scholar 

  • Gordon, S. V., Brosch, R., Billault, A., Garnier, T., Eiglmeier, K., & Cole, S. T. (1999). Identification of variable regions in the genome of tubercle bacilli using bacterial artificial chromosome arrays. Molecular Microbiology, 32(3), 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Kamio, Y., Itoh, Y., Terawaki, Y., & Kusano, T. (1981). Cadaverine is covalently linked to peptidoglycan in Selenomonas ruminantium. Journal of Bacteriology, 145(1), 122–128.

    PubMed  CAS  Google Scholar 

  • Kanani, H., Chrysanthopoulos, P. K., & Klapa, M. I. (2008). Standardizing GC-MS metabolomics. Journal of Chromatography, 871, 191–201.

    Article  PubMed  CAS  Google Scholar 

  • Karboul, A., Mazza, A., Gey Van Pittius, N. C., Ho, J. L., Brousseau, R., & Mardassi, H. (2008). Frequent homologous recombination events in Mycobacterium tuberculosis PE/PPE multigene families: Potential role in antigenic variability. Journal of Bacteriology, 190(23), 7838–7846.

    Article  PubMed  CAS  Google Scholar 

  • Kendall, S. L., Withers, M., Soffair, C. N., Moreland, N. J., Gurcha, S., Sidders, B., et al. (2007). A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Molecular Microbiology, 65(3), 684–699.

    Article  PubMed  CAS  Google Scholar 

  • Kremer, K., van-der-Werf, M. J., Au, B. K., Anh, D. D., Kam, K. M., van-Doorn, H. R., et al. (2009). Vaccine-induced immunity circumvented by typical Mycobacterium tuberculosis Beijing strains. Emerging Infectious Diseases, 15(2), 335–339.

    Article  PubMed  Google Scholar 

  • Lopez, B., Aguilar, D., Orozco, H., Burger, M., Espitia, C., Ritacco, V., et al. (2003). A marked difference in pathogenesis and immune response induced by different Mycobacterium tuberculosis genotypes. Clinical and Experimental Immunology, 133, 30–37.

    Article  PubMed  CAS  Google Scholar 

  • Målen, H., De Souza, G. A., Pathak, S., Søfteland, T., & Wiker, H. G. (2011). Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiology, 24(11), 18.

    Article  Google Scholar 

  • Manca, C., Tsenova, L., Bergtold, A., Freeman, S., Tovey, M., Musser, J. M., et al. (2001). Virulence of a Mycobacterium tuberculosis clinical isolate in mice is determined by failure to induce Th1 type immunity and is associated with induction of IFN-alpha/beta. Procedings of the National Academy of Sciences USA, 98, 5752–5757.

    Article  CAS  Google Scholar 

  • Neely, M. N., & Olson, E. R. (1996). Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. Journal of Bacteriology, 178(18), 5522–5528.

    PubMed  CAS  Google Scholar 

  • Newton, G. L., Av-Gay, Y., & Fahey, R. C. (2000). A novel mycothiol-dependent detoxification pathway in mycobacteria involving mycothiol S-conjugate amidase. Biochemistry, 39(35), 10739–10746.

    Article  PubMed  CAS  Google Scholar 

  • O’Barr, T. P., & Everett, K. A. (1970). Effect of l-homoserine of growth of Mycobacterium tuberculosis. Infection and Immunity, 3(2), 328–332.

    Google Scholar 

  • Paley, S. M., & Karp, P. D. (2006). The pathway tools cellular overview diagram and omics viewer. Nucleic Acids Research, 34(13), 3771–3778.

    Article  PubMed  CAS  Google Scholar 

  • Parish, T., Liu, J., Nikaido, H., & Stoker, N. G. (1997). A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. Journal of Bacteriology, 179(24), 7827–7833.

    PubMed  CAS  Google Scholar 

  • Parish, T., Smith, D. A., Kendall, S., Casali, N., Bancroft, G. J., & Stoker, N. G. (2003). Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis. Infection and Immunity, 71, 1134–1140.

    Article  PubMed  CAS  Google Scholar 

  • Pheiffer, C., Betts, J. C., Flynn, H. R., Lukey, P. T., & van Helden, P. (2005). Protein expression by a Beijing strain differs from that of another clinical isolate and Mycobacterium tuberculosis H37Rv. Microbiology, 151(4), 1139–1150.

    Article  PubMed  CAS  Google Scholar 

  • Qureshi, N., Sathyamoorthy, N., & Takayama, K. (1984). Biosynthesis of C30 to C56 fatty acids by an extract of Mycobacterium tuberculosis H37Ra. Journal of Bacteriology, 157(1), 46–52.

    PubMed  CAS  Google Scholar 

  • Rad, M. E., Bifani, P., Martin, C., Kremer, K., Samper, S., Rauzier, J., et al. (2003). Mutations in putative mutator genes of Mycobacterium tuberculosis strains of the W-Beijing family. Emerging Infectious Diseases, 9, 838–845.

    Article  CAS  Google Scholar 

  • Ramakrishnan, T., Murthy, P. S., & Gopinathan, K. P. (1972). Intermediary metabolism of mycobacteria. Bacteriology Review, 36(1), 65–108.

    CAS  Google Scholar 

  • Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., et al. (2005). The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 69(2), 326–356.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M. B., Domenech, P., Manca, C., Su, H., Barczak, A. K., Kreiswirth, B. N., et al. (2004). A glyco-lipid of hypervirulent tuberculosis strains that inhibits the innate immune response. Nature, 431, 84–87.

    Article  PubMed  CAS  Google Scholar 

  • Reed, M. B., Gagneux, S., DeRiemer, K., Small, P. M., & Barry, C. E, I. I. I. (2007). The W-Beijing lineage of Mycobacterium tuberculosis overproduces triglycerides and has the DosR dormancy regulon constitutively upregulated. Journal of Bacteriology, 189(7), 2583–2589.

    Article  PubMed  CAS  Google Scholar 

  • Reitzer, L. (2003). Nitrogen assimilation and global regulation in Escherichia coli. Annual Review of Microbiology, 57, 155–176.

    Article  PubMed  CAS  Google Scholar 

  • Rocha-Ramírez, L. M., Estrada-García, I., López-Marín, L. M., Segura-Salinas, E., Méndez-Aragón, P., Van Soolingen, D., et al. (2008). Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis, 88(3), 212–220.

    Article  PubMed  Google Scholar 

  • Samartzidou, H., & Delcour, A. H. (1998). E.coli PhoE porin has an opposite voltage-dependence to the homologous OmpF. EMBO Journal, 17(1), 93–100.

    Article  PubMed  CAS  Google Scholar 

  • Sareen, D., Newton, G. L., Fahey, R. C., & Buchmeier, N. A. (2003). Mycothiol is essential for growth of Mycobacterium tuberculosis Erdman. Journal of Bacteriology, 185(22), 6736–6740.

    Article  PubMed  CAS  Google Scholar 

  • Shi, L., Sohaskey, C. D., Pfeiffer, C., Datta, P., Parks, M., McFadden, J., et al. (2010). Carbon flux rerouting during Mycobacterium tuberculosis growth arrest. Molecular Microbiology, 78(5), 1199–1215.

    Article  PubMed  CAS  Google Scholar 

  • Tsenova, L., Ellison, E., Harbacheuski, R., Moreira, A. L., Kurepina, N., Reed, M. B., et al. (2005). Virulence of selected Mycobacterium tuberculosis clinical isolates in the rabbit model of meningitis is dependent on phenolic glycolipid produced by the bacilli. Journal of Infectious Diseases, 192(1), 98–106.

    Article  PubMed  Google Scholar 

  • Umbarger, H. E. (1978). Amino acid biosynthesis and its regulation. Annual Review Biochemistry., 47, 532–606.

    CAS  Google Scholar 

  • Van Soolingen, D., Qian, L., deHaas, P. E., Douglas, J. T., Traore, H., Portaels, F., et al. (1995). Predominance of a single genotype of Mycobacterium tuberculosis in countries of East Asia. Journal of Clinical Microbiology, 33, 3234–3238.

    PubMed  Google Scholar 

  • Vercellone, A., Nigou, J., & Puzo, G. (1998). Relationships between the structure and the roles of lipoarabinomannans and related glycoconjugates in tuberculosis pathogenesis. Frontiers Bioscience, 3, 149–163.

    Google Scholar 

  • Voskuil, M. I., Schnappinger, D., Visconti, K. C., Harrell, M. I., Dolganov, G. M., Sherman, D. R., et al. (2003). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. Journal of Experimental Medicine, 198, 705–713.

    Article  PubMed  CAS  Google Scholar 

  • Warren, R., Richardson, M., Sampson, S., Hauman, J. H., Beyers, N., Donald, P. R., et al. (1996). Genotyping of Mycobacterium tuberculosis with additional markers enhances accuracy in epidemiological studies. Journal of Clinical Microbiology, 34(9), 2219–2224.

    PubMed  CAS  Google Scholar 

  • Zheng, H., Lu, L., Wang, B., Pu, S., Zhang, X., Zhu, G., et al. (2008). Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE, 3(6), e2375.

    Article  PubMed  Google Scholar 

  • Ziebart, K. T., Dixon, S. M., Avila, B., El-Badri, M. H., Guggenheim, K. G., Kurth, M. J., et al. (2010). Targeting multiple chorismate-utilizing enzymes with a single inhibitor: Validation of a three-stage design. Journal of Medicinal Chemistry, 53(9), 3718–3729.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Du Toit Loots.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner-Roloff, R.J., Koekemoer, G., Warren, R.M. et al. A metabolomics investigation of a hyper- and hypo-virulent phenotype of Beijing lineage M. tuberculosis . Metabolomics 8, 1194–1203 (2012). https://doi.org/10.1007/s11306-012-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0424-6

Keywords

Navigation