Skip to main content
Log in

Nearline acquisition and processing of liquid chromatography-tandem mass spectrometry data

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Liquid chromatography–mass spectrometry (LC–MS) is a commonly used analytical platform for non-targeted metabolite profiling experiments. Although data acquisition, processing and statistical analyses are almost routine in such experiments, further annotation and subsequent identification of chemical compounds are not. For identification, tandem mass spectra provide valuable information towards the structure of chemical compounds. These are typically acquired online, in data-dependent mode, or offline, using handcrafted acquisition methods and manually extracted from raw data. Here, we present several methods to fast-track and improve both the acquisition and processing of LC–MS/MS data. Our nearly online (nearline) data-dependent tandem MS strategy creates a minimal set of LC–MS/MS acquisition methods for relevant features revealed by a preceding non-targeted profiling experiment. Using different filtering criteria, such as intensity or ion type, the acquisition of irrelevant spectra is minimized. Afterwards, LC–MS/MS raw data are processed with feature detection and grouping algorithms. The extracted tandem mass spectra can be used for both library search and de-novo identification methods. The algorithms are implemented in the R package MetShot and support the export to Bruker, Agilent or Waters QTOF instruments and the vendor-independent TraML standard. We evaluate the performance of our workflow on a Bruker micrOTOF-Q by comparison of automatically acquired and extracted tandem mass spectra obtained from a mixture of natural product standards against manually extracted reference spectra. Using Arabidopsis thaliana wild-type and biosynthetic gene knockout plants, we characterize the metabolic products of a biosynthetic pathway and demonstrate the integration of our approach into a typical non-targeted metabolite profiling workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Böcker, S., Letzel, M., Lipták, Z., & Pervukhin, A. (2008). SIRIUS: Decomposing isotope patterns for metabolite identification. Bioinformatics, 25(2), 218–224.

    Google Scholar 

  • Böttcher, C., von Roepenack-Lahaye, E., Schmidt, J., Schmotz, C., Neumann, S., Scheel, D., Clemens, S. (2008). Metabolome analysis of biosynthetic mutants reveals a diversity of metabolic changes and allows identification of a large number of new compounds in Arabidopsis. Plant Physiology, 147(4), 2107–2120.

    Article  PubMed  Google Scholar 

  • Böttcher, C., Westphal, L., Schmotz, C., Prade, E., Scheel, D., & Glawischnig, E. (2009). The multifunctional enzyme CYP71B15 (PHYTOALEXIN DEFICIENT3) converts cysteine-indole-3-acetonitrile to camalexin in the indole-3-acetonitrile metabolic network of Arabidopsis thaliana. The Plant Cell, 21(6), 1830–1845.

    Article  PubMed  Google Scholar 

  • Brown, M., Dunn, W. B. Dobson, P., Patel, Y., Winder, C. L., Francis-McIntyre, S., Begley, P., Carroll, K., Broadhurst, D., Tseng, A., Swainston, N., Spasic, I., Goodacre, R., & Kell, D. B. (2009). Mass spectrometry tools and metabolite-specific databases for molecular identification in metabolomics. Analyst, 134(7), 1322–1332.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M., Wedge, D. C., Goodacre, R., Kell, D. B., Baker, P. N., Kenny, L. C., Mamas, M. A., Neyses, L., & Dunn, W. B. (2011). Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics, 27(8), 1108–1112.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, E. W., Chambers, M., Neumann, S., Levander, F., Binz, P.-A., Shofstahl, J., Campbell, D. S., Mendoza, L., Ovelleiro, D., Helsens, K., Martens, L., Aebersold, R., Moritz, R. L., & Brusniak, M.-Y. (Dec 2011). TraML: A standard format for exchange of selected reaction monitoring transition lists. Molecular & Cellular Proteomics (in press).

  • Draper, J., Enot, D. P., Parker, D., Beckmann, M., Snowdon, S., Lin, W., & Zubair, H. (2009). Metabolite signal identification in accurate mass metabolomics data with MZedDB, an interactive m/z annotation tool utilising predicted ionisation behaviour ’rules’. BMC Bioinformatics, 10, 227.

    Article  PubMed  Google Scholar 

  • Gertsbakh, I., & Stern, H. I. (1978). Minimal resources for fixed and variable job schedules. Operations Research, 26(1), 68–85.

    Article  Google Scholar 

  • Hoopmann, M. R., Merrihew, G. E., von Haller, P. D., MacCoss, M. J. (2009). Post analysis data acquisition for the iterative MS/MS sampling of proteomics mixtures. Journal of Proteome Research, 8(4), 1870–1875.

    Article  PubMed  CAS  Google Scholar 

  • Horai, H., Arita, M., Kanaya, S., Nihei, Y., Ikeda, T., Suwa, K., Ojima, Y., Tanaka, K., Tanaka, S., Aoshima, K., Oda, Y., Kakazu, Y., Kusano, M., Tohge, T., Matsuda, F., Sawada, Y., Hirai, M. Y., Nakanishi, H., Ikeda, K., Akimoto, N., Maoka, T., Takahashi, H., Ara, T., Sakurai, N., Suzuki, H., Shibata, D., Neumann, S., Iida, T., Tanaka, K., Funatsu, K., Matsuura, F., Soga, T., Taguchi, R., Saito, K., & Nishioka, T. (2010). MassBank: a public repository for sharing mass spectral data for life sciences. Journal of Mass Spectrometry, 45(7), 703–714.

    Article  PubMed  CAS  Google Scholar 

  • Jansson, J., Willing, B., Lucio, M., Fekete, A., Dicksved, J., Halfvarson, J., Tysk, C., & Schmitt-Kopplin, P. (2009). Metabolomics reveals metabolic biomarkers of Crohn’s disease. PLoS One, 4(7), e6386.

    Article  PubMed  Google Scholar 

  • Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7(1), 234.

    Article  PubMed  Google Scholar 

  • Kleinberg, J., & Tardos, E. (2005). Algorithm Design. Boston, MA: Addison-Wesley Longman Publishing Co Inc.

    Google Scholar 

  • Kuhl, C., Tautenhahn, R., Böttcher, C., Larson, T. R., & Neumann, S. (2011). CAMERA: An integrated strategy for compound spectra extraction and annotation of LC/MS data sets. Anal Chem, 84(1), 283–289.

    Article  PubMed  Google Scholar 

  • Okazaki, Y., Shimojima, M., Sawada, Y., Toyooka, K., Narisawa, T., Mochida, K., Tanaka, H., Matsuda, F., Hirai, A., Hirai, M. Y., Ohta, H.,& Saito, K. (2009). A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell, 21(3), 892–909.

    Article  PubMed  CAS  Google Scholar 

  • Pluskal, T., Castillo, S., Villar-Briones, A., & Oresic, M. (2010). MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinformatics, 11(1), 395. ISSN 1471-2105.

    Article  PubMed  Google Scholar 

  • Rocca-Serra, P., Brandizi, M., Maguire, E., Sklyar, N., Taylor, C., Begley, K., Field, D., Harris, S., Hide, W., Hofmann, O., Neumann, S., Sterk, P., Tong, W., & Sansone, S.-A. (2010). ISA software suite: Supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics, 26(18), 2354–2356.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C., Want, E., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching and identification. Analitical Chemistry, 78(3), 779–787.

    Article  CAS  Google Scholar 

  • Smith, C. A., Maille, G. O., Want, E. J., Qin, C., Trauger, S. A., Brandon, T. R., Custodio, D. E., Abagyan, R., & Siuzdak, G. (2005). METLIN: A metabolite mass spectral database. In: Proceedings of the 9th International Congress of Therapeutic Drug Monitoring and Clinical Toxicology, vol 27, pp. 747–751. Louisville, Kentucky.

  • Tautenhahn, R., Böttcher, C., & Neumann, S. (2008). Highly sensitive feature detection for high resolution LC/MS. BMC Bioinformatics, 9(1), 504. ISSN 1471-2105.

    Article  PubMed  Google Scholar 

  • Tikunov, Y., Lommen, A., Vos, C. D., Verhoeven, H., Bino, R., Hall, R., & Bovy, A. (2005). A novel approach for nontargeted data analysis for metabolomics: Large-scale profiling of tomato fruit volatiles. Plant Physiology, 139(3), 1125–1137.

    Article  PubMed  CAS  Google Scholar 

  • Wang, T. J., Larson, M. G., Vasan, R. S., Cheng, S., Rhee, E. P., McCabe, E., Lewis, G. D., Fox, C. S., Jacques, P. F., Fernandez, C., O’Donnell, C. J., Carr, S. A., Mootha, V. K., Florez, J. C., Souza, A., Melander, O., Clish, C. B., & Gerszten, R. E. (2011). Metabolite profiles and the risk of developing diabetes. Nature Medicine, 17(4), 448–453.

    Article  PubMed  Google Scholar 

  • Wolf, S., Schmidt, S., Müller-Hannemann, M., & Neumann, S. (2010). In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinformatics, 11(1), 148. ISSN 1471-2105.

    Article  PubMed  Google Scholar 

  • Zhao, Y., Hull, A. K., Gupta, N. R., Goss, K. A., Alonso, J., Ecker, J. R., Normanly, J., Chory, J., & Celenza, J. L. (2002). Trp-dependent auxin biosynthesis in Arabidopsis: Involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev, 16(23), 3100–3112.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Ralf Tautenhahn (The Scripps Research Institute, La Jolla, CA) tested the nearline data-dependent tandem MS approach and contributed the export for the Agilent QTOF instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Neumann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (395 KB)

Below is the link to the electronic supplementary material.

XLS (42 KB)

Below is the link to the electronic supplementary material.

XLS (31 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neumann, S., Thum, A. & Böttcher, C. Nearline acquisition and processing of liquid chromatography-tandem mass spectrometry data. Metabolomics 9 (Suppl 1), 84–91 (2013). https://doi.org/10.1007/s11306-012-0401-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-012-0401-0

Keywords

Navigation