Skip to main content
Log in

An NMR-based metabolomic approach to identify the botanical origin of honey

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

NMR can be used in food analysis for origin discrimination and biomarker discovery using a metabolomic approach. Here, we present an example of this strategy to discriminate honey samples of different botanical origins. The NMR spectra of 353 chloroform extracts of selected honey samples were analyzed to detect possible markers of their floral origin. Six monofloral Italian honey types (acacia, linden, orange, eucalyptus, chestnut, and honeydew) were analyzed together with polyfloral samples. Specific markers were identified for each monofloral origin: two markers for acacia (chrysin and pinocembrin), one for chestnut (γ-LACT-3-PKA), two for orange (8-hydroxylinalool and caffeine), one for eucalyptus (dehydrovomifoliol), one for honeydew (a diacylglycerilether) and two for linden (4-(1-hydroxy-1-methylethyl)cyclohexa-1,3-diene-carboxylic acid and 4-(1-methylethenyl)cyclohexa-1,3-diene-carboxylic acid). An NMR-based metabolomic approach that used O2PLS-DA multivariate data analysis allowed us to discriminate the different types of honey. Two different classifiers were built based on different multivariate techniques. The high precision of the classification obtained suggests that this approach could be useful to develop generally applicable metabolomic tools to discriminate the origin of honey samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alissandrakis, E., Tarantilis, P., Pappas, C., Harizanis, P. C., & Polossiou, M. (2011). Investigation of organic extractives from unifloral chestnut (Castanea sativa L.) and eucalyptus (Eucalyptus Globulus Labill.) honeys and flowers to identification of botanical marker compounds. Food Science and Technology, 44, 1042–1051.

    CAS  Google Scholar 

  • Alvarez-Suarez, J. M., Tulipani, S., Díaz, D., Estevez, Y., Romandini, S., Giampieri, F., et al. (2010). Antioxidant and antimicrobial capacity of several monofloral Cuban honeys and their correlation with color, polyphenol content and other chemical compounds. Food and Chemical Toxicology, 48, 2490–2499.

    Article  PubMed  CAS  Google Scholar 

  • Beretta, G., Artali, R., Caneva, E., Orlandini, S., Centini, M., & Maffei Facino, R. (2009a). Quinoline alkaloids in honey: Further analytical (HPLC-DAD-ESI-MS, multidimensional diffusion-ordered NMR spectroscopy), theoretical and chemometric studies. Journal of Pharmaceutical and Biomedical Analysis, 50, 432–439.

    Article  PubMed  CAS  Google Scholar 

  • Beretta, G., Vistoli, G., Caneva, E., Anselmi, C., & Maffei Facino, R. (2009b). Structure elucidation and NMR assignments of two new pyrrolidinyl quinoline alkaloids from chestnut honey. Magnetic Resonance in Chemistry, 47, 456–459.

    Article  PubMed  CAS  Google Scholar 

  • Bertelli, D., Plessi, M., Sabatini, A. G., Lolli, M., & Grillenzoni, F. (2007). Classification of Italian honeys by mid-infrared diffuse reflectance spectroscopy (DRIFTS). Food Chemistry, 101, 1565–1570.

    Article  CAS  Google Scholar 

  • Bertoncelj, J., Polak, T., Kropf, U., Korošec, M., & Golob, T. (2011). LC-DAD-ESI/MS analysis of flavonoids and abscisic acid with chemometric approach for the classification of Slovenian honey. Food Chemistry, 127, 296–302.

    Article  CAS  Google Scholar 

  • Bonaga, G., Giumanini, A. G., & Gliozzi, G. (1986). Chemical composition of chesnut honey: Analysis of the hydrocarbon fraction. Journal of Agriculture and Food Chemistry, 34, 319–326.

    Article  CAS  Google Scholar 

  • Castro-Vázquez, L., Díaz-Maroto, M. C., & Pérez-Coello, M. S. (2007). Aroma composition and new chemical markers of Spanish citrus honeys. Food Chemistry, 103, 601–606.

    Article  Google Scholar 

  • Codex Alimentarius Commission. (2001). Revised codex standard for honey. Codex Standard 12-1981. Rev.1, 1987. Rev.2, 2001.

  • EL-Manzalawy, Y., Honavar, V. (2005). WLSVM: Integrating LibSVM into Weka environment. http://www.cs.iastate.edu/~yasser/wlsvm.

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikström, C., & Wold, S. (2006). Multi- and megavariate data analysis. Basic principles and applications. Appendix II. Umeå: Umetrics AB.

    Google Scholar 

  • Escriche, I., Kadar, M., Juan-Borrás, M., & Domenech, E. (2011). Using flavonoids, phenolic compounds and headspace volatile profile for botanical authentication of lemon and orange honeys. Food Research International, 44, 1504–1513.

    Article  CAS  Google Scholar 

  • Etzold, E., & Lichtenberg-Kraag, B. (2008). Determination of the botanical origin of honey by Fourier-transformed infrared spectroscopy: An approach for routine analysis. European Food Research and Technology, 227, 586–597.

    Article  Google Scholar 

  • European Commission. (2002). Council directive 2001/110/EC of 20 December 2001 relating to honey. Official Journal of the European Communities, L10, 47–52.

  • Frérot, E., Velluz, A., Decorzant, E., & Naef, R. (2006). From linden flower to linden honey. Glycosidic precursors of cyclohexa-1,3-diene-1-carboxylic acids. Chemistry & Biodiversity, 3, 94–100.

    Article  Google Scholar 

  • Graddon, A. D., Morrison, J. D., & Smith, J. F. (1979). Volatile constituents of some unifloral Australian honeys. Journal of Agriculture and Food Chemistry, 27, 832–837.

    Article  CAS  Google Scholar 

  • Guyot, C., Scheirman, V., & Collin, S. (1999). Floral origin markers of heather honeys: Calluna vulgaris and Erica arborea. Food Chemistry, 64, 3–11.

    Article  CAS  Google Scholar 

  • Hennessy, S., Downey, G., & O’Donnell, C. P. (2010). Attempted confirmation of the provenance of Corsican PDO honey using FT-IR spectroscopy and multivariate data analysis. Journal of Agricultural and Food Chemistry, 58, 9401–9406.

    Article  PubMed  CAS  Google Scholar 

  • Isidorov, V. A., Czyżewska, U., Jankowska, E., & Bakier, S. (2011). Determination of royal jelly acids in honey. Food Chemistry, 124, 387–391.

    Article  CAS  Google Scholar 

  • Ivanciuc, O. (2007). Applications of support vector machines in chemistry. Reviews in Computational Chemistry, 23, 291–400.

    Article  CAS  Google Scholar 

  • Kaškonienė, V., & Venskutonis, P. R. (2010). Floral markers in honey of various botanical and geographic origins: a review. Comprehensive Reviews in Food Science and Food Safety, 9, 620–634.

    Article  Google Scholar 

  • Liu, R., Gao, M., Yang, Z., & Du, G. (2008). Pinocembrin protects rat brain against oxidation and apoptosis induced by ischemia–reperfusion both in vivo and in vitro. Brain Research, 1216, 104–115.

    Article  PubMed  CAS  Google Scholar 

  • Marghitas, L. A., Dezmirean, D. S., Pocol, C. B., Ilea, M., Bobis, O., & Gergen, I. (2010). The development of a biochemical profile of acacia honey by identifying biochemical determinants of its quality. Notulae Botanicae Horti Agrobotanici Cluj, 38, 84–90.

    CAS  Google Scholar 

  • Melliou, E., Chinou, I. (2011, in press). Chemical constituents of selected unifloral Greek bee-honeys with antimicrobial activity. Food Chemistry, doi:10.1016/j.foodchem.2011.04.047.

  • Modi, A. A., Feld, J. J., Park, Y., Kleiner, D. E., Everhart, J. E., Liang, T. J., et al. (2010). Increased caffeine consumption is associated with reduced hepatic fibrosis. Hepatology, 51, 201–209.

    Article  PubMed  CAS  Google Scholar 

  • Olsson, I.-M., Gottfries, J., & Wold, S. (2004). D-optimal onion designs in statistical molecular design. Chemometrics Intelligent Laboratory Systems, 73, 37–46.

    Article  CAS  Google Scholar 

  • Paris, D., Melck, D., Stocchero, M., D’Apolito, O., Calemma, R., Castello, G., et al. (2010). Monitoring liver alterations during hepatic tumorigenesis by NMR profiling and pattern recognition. Metabolomics, 6, 405–416.

    Article  CAS  Google Scholar 

  • Persano Oddo, L., & Piro, R. (2004). Main European unifloral honeys: Descriptive sheets. Apidologie, 35, S38–S81.

    Article  Google Scholar 

  • Pichichero, E., Cicconi, R., Mattei, M., Gallinella Muzi, M., & Canini, A. (2010). Acacia honey and chrysin reduce proliferation of melanoma cells through alterations in cell cycle progression. International Journal of Oncology, 37, 973–981.

    PubMed  Google Scholar 

  • Plutowska, B., Chmiel, T., Dymerski, T., & Wardencki, W. (2011). A headspace solid-phase microextraction method development and its application in the determination of volatiles in honeys by gas chromatography. Food Chemistry, 126, 1288–1298.

    Article  CAS  Google Scholar 

  • Rastrelli, F., Schievano, E., Bagno, A., & Mammi, S. (2009). NMR quantification of trace components in complex matrices by band-selective excitation with adiabatic pulses. Magnetic Resonance in Chemistry, 47, 868–872.

    Article  PubMed  CAS  Google Scholar 

  • Ruoff, K., Luginbühl, W., Künzli, R., Bogdanov, S., Bosset, J. O., Von der Ohe, K., et al. (2006). Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. J. Agr. Food Chem., 54, 6858–6866.

    Article  CAS  Google Scholar 

  • Schievano, E., Peggion, E., & Mammi, S. (2010). 1H nuclear magnetic resonance spectra of chloroform extracts of honey for chemometric determination of its botanical origin. Journal of Agricultural and Food Chemistry, 58, 57–65.

    Article  PubMed  CAS  Google Scholar 

  • Socha, R., Juszczak, L., Pietrzyk, S., Gałkowska, D., Fortuna, T., & Witczak, T. (2011). Phenolic profile and antioxidant properties of Polish honeys. International Journal of Food Science & Technology, 46, 528–534.

    Article  CAS  Google Scholar 

  • Stephens, J. M., Schlothauer, R. C., Morris, B. D., Yang, D., Fearnley, L., Greenwood, D. R., et al. (2010). Phenolic compounds and methylglyoxal in some New Zealand manuka and kanuka honeys. Food Chemistry, 120, 78–86.

    Article  CAS  Google Scholar 

  • Tan, S.-T., Holland, P. T., Wilkins, A. L., & Molan, P. C. (1988). Extractives from New Zeland honeys. 1. White clover, Manuka and Kanuka unifloral honeys. Journal of Agriculture and Food Chemistry, 36, 453–460.

    Article  CAS  Google Scholar 

  • Truchado, P., Ferreres, F., & Tomas-Barberan, F. A. (2009a). Liquid chromatography–tandem mass spectrometry reveals the widespread occurrence of flavonoid glycosides in honey, and their potential as floral origin markers. Journal of Chromatography A, 1216, 7241–7248.

    Article  PubMed  CAS  Google Scholar 

  • Truchado, P., Martos, I., Bortolotti, L., Sabatini, A. G., Ferreres, F., & Tomas-Barberan, F. A. (2009b). Use of quinoline alkaloids as markers of the floral origin of chestnut honey. Journal of Agriculture and Food Chemistry, 57, 5680–5686.

    Article  CAS  Google Scholar 

  • Trygg, J., & Wold, S. (2003). O2-PLS, a two-block (X–Y) latent variable regression (LVR) method with an integral OSC filter. Journal of Chemometrics, 17, 53–64.

    Article  CAS  Google Scholar 

  • Tulloch, A. P., & Hoffman, L. L. (1972). Canadian beeswax: Analytical values and composition of hydrocarbons, free acids and long chain esters. The Journal of the American Oil Chemists’ Society, 49, 696–699.

    Article  CAS  Google Scholar 

  • Wiklund, S., Johansson, E., Sjöström, L., Mellerowicz, E. J., Edlund, U., Shockcor, J. P., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80, 115–122.

    Article  PubMed  CAS  Google Scholar 

  • Wishart, D. S. (2008). Metabolomics: Applications to food science and nutrition research. Trends in Food Science & Technology, 19, 482–493.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Veneto Region (UNIMIELE project, 2008) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabetta Schievano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schievano, E., Stocchero, M., Morelato, E. et al. An NMR-based metabolomic approach to identify the botanical origin of honey. Metabolomics 8, 679–690 (2012). https://doi.org/10.1007/s11306-011-0362-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-011-0362-8

Keywords

Navigation