Skip to main content
Log in

A metabolite fingerprinting for the characterization of commercial botanical dietary supplements

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Phytopharmaceuticals, phytomedicines and botanical dietary supplements are products of wide interest considering the increase of their use. The development of fast and effective analytical methods able to give a fingerprinting of the product, on the basis of the plant extracts declared to be contained in it, is surely of high interest. In a previous investigation electrospray mass spectrometry was proved to be effective for the characterization of plant extracts. The direct infusion of the samples and the analyses in both positive and negative ion mode lead to a clear differentiation of the different samples. To verify if the same approach can be effective also for mixtures of plant extracts, five different commercial dietary supplements [Sedivitax gocce (1), Finocarbo Plus opercoli (2), Sollievo Bio tavolette (3), MiniMas opercoli (4) and Ruscoven gocce (5), all products from Aboca S.p.A., Sansepolcro, Italy] were analyzed by ESI. In order to evaluate possible changes in the metabolic profile with respect to different years of production, ten different batches of the commercial dietary supplements were considered. The mass spectral data were evaluated by multivariate analysis and the obtained results suggest that the method allows a satisfactory and rapid characterization of complex mixtures of commercial dietary supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Awad, R., Muhammad, A., Durst, T., Vance, L., Trudeau, L., & Arnason, T. (2009). Bioassay-guided fractionation of lemon balm (Melissa officinalis L.) using an in vitro measure of GABA transaminase activity. Phytotherapy Research, 23, 1075–1081.

    Article  PubMed  CAS  Google Scholar 

  • Barnes, P. M., Barbara Bloom, B., & Nahin, R. L. (2008). Complementary and alternative medicine use among adults and children: United States, 2007. National Health Statistics Reports, 12, 1–24. Hyattsville, MD: National Center for Health Statistics. nccam.nih.gov/news/camstats.htm.

  • Beck, M. A., & Haberlein, H. (1999). Flavonol glycosides from Eschscholtzia californica. Phytochemistry, 50, 329–332.

    Article  PubMed  CAS  Google Scholar 

  • Benavente-Garcia, O., Castillo, J., Lorente, J., Ortuno, A., & Del Rio, J. A. (2000). Antioxidant activity of phenolics extracted from Olea europea L. leaves. Food Chemistry, 68, 457–462.

    Article  CAS  Google Scholar 

  • Benigni, R., Capra, C., & Cattorini, P. E. (1962). Piante medicinali chimica farmacologia e terapia (Vol. II, pp. 1012–1022). Milano: Inverni & Della Beffa.

    Google Scholar 

  • Bicchi, C., Binello, A., & Rubiolo, P. (2000). Packed column SFC/UV versus HPLC/UV analysis of valerenic acids and valepotriates in extracts of Valeriana officinalis L. Phytochemical Analysis, 11, 179–183.

    Article  CAS  Google Scholar 

  • Cao, M., Koulman, A., Johnson, L. J., Lane, G. A., & Rasmussen, S. (2008). Advanced data-mining strategies for the analysis of direct-infusion ion trap mass spectrometry data from the association of perennial ryegrass with its endophytic fungus, Neotyphodium loli. Plant Physiology, 146, 1501–1514.

    Article  PubMed  CAS  Google Scholar 

  • Carnat, A., Carnat, A. P., Fraisse, D., Ricoux, L., & Lamaison, J. L. (2004). The aromatic and polyphenolic composition of Roman camomile tea. Fitoterapia, 75, 32–38.

    Article  PubMed  CAS  Google Scholar 

  • Dhawan, K., Dhawan, S., & Sharma, A. (2004). Passiflora: A review update. Journal of Ethnopharmacology, 94, 1–23.

    Article  PubMed  CAS  Google Scholar 

  • Fonseca, F. N., Tavares, M. F. M., & Horvath, C. (2007). Capillary electrochromatography of selected phenolic compounds of Chamomilla recutita. Journal of Chromatography A, 1154, 390–399.

    Article  PubMed  CAS  Google Scholar 

  • Ganzera, M., Guggenberger, M., Stuppner, H., & Zidorn, C. (2008). Altitudinal variation of secondary metabolite profiles in flowering heads of Matricaria chamomilla. Planta Medica, 74, 453–457.

    Article  PubMed  CAS  Google Scholar 

  • Garrard, J., Harms, S., Eberly, L. E., & Matiak, A. (2003). Variations in product choices of frequently purchased herbs: Caveat emptor. Archives of Internal Medicine, 163, 2290–2295.

    Article  PubMed  Google Scholar 

  • Grata, E., Boccard, J., Glauser, G., et al. (2007). Development of a two-step screening ESI-TOF MS method for rapid determination of significant stress-induced metabolome modifications in plant leaf extracts: The wound response in Arabidopsis thaliana as a case study. Journal of Separation Science, 30, 2268–2278.

    Article  PubMed  CAS  Google Scholar 

  • Grata, E., Guillarme, D., Glauser, G., et al. (2009). Metabolite profiling of plant extracts by ultra-high-pressure liquid chromatography at elevated temperature coupled to time-of-flight mass spectrometry. Journal of Chromatography A, 1216, 5660–5668.

    Article  PubMed  CAS  Google Scholar 

  • Guedon, D., & Cappelaere, N. (1990). HPLC analysis of the main alkaloids from Eschscholtzia californica Cham. Phytochemical Analysis, 1, 77–82.

    Google Scholar 

  • Guedon, D. J., & Pasquier, B. P. (1994). Analysis and distribution of flavonoid glycosides and rosmarinic acid in 40 Mentha x piperita clones. Journal of Agriculture and Food Chemistry, 42, 679–684.

    Article  CAS  Google Scholar 

  • Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm.

  • Koo, M., Kim, S. H., Lee, N., et al. (2008). 3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitory effect of Vitis vinifera. Fitoterapia, 79, 204–206.

    Article  PubMed  CAS  Google Scholar 

  • Koulman, A., Cao, M., Faville, M., Lane, G., Mace, W., & Rasmussen, S. (2009). Semi-quantitative and structural metabolic phenotyping by direct infusion ion trap mass spectrometry and its application in genetical metabolomics. Rapid Communications in Mass Spectrometry, 23, 2253–2263.

    Article  PubMed  CAS  Google Scholar 

  • Koulman, A., Tapper, B. A., Fraser, K., Cao, M., Lane, G. A., & Rasmussen, S. (2007). High-throughput direct-infusion ion trap mass spectrometry: A new method for metabolomics. Rapid Communications in Mass Spectrometry, 21, 421–428.

    Article  PubMed  CAS  Google Scholar 

  • Kunzemann, J., & Herrmann, K. (1977). Isolation and identification of flavon(ol)-O-glycosides in caraway (Carum carvi J.), fennel (Foeniculum vulgare Mill.), anise (Pimpinella anisum L.), and coriander (Coriandrum sativum L.), and of flavon-C-glycosides in anise I. Phenolics of spices. Zeitschrift fur Lebensmittel-untersuchung und -forschung, 164, 194–200.

    Article  PubMed  CAS  Google Scholar 

  • Leung, A. Y., & Foster, S. (1996). Encyclopedia of common natural ingredients used in food, drugs and cosmetics (2nd ed., pp. 161–202). New York: Wiley.

    Google Scholar 

  • Lin, L. Z., & Harnly, J. M. (2007). A screening method for the identification of glycosylated flavonoids and other phenolic compounds using a standard analytical approach for all plant materials. Journal of Agriculture and Food Chemistry, 55, 1084–1096.

    Article  CAS  Google Scholar 

  • Lizarraga, D., Tourino, S., Reyes-Zurita, F. J., et al. (2008). Witch hazel (Hamamelis virginiana) fractions and the importance of gallate moieties—electron transfer capacities in their antitumoral properties. Journal of Agriculture and Food Chemistry, 56, 11675–11682.

    Article  CAS  Google Scholar 

  • Longo, L., & Vasapollo, G. (2005). Determination of anthocyanins in Ruscus aculeatus L. berries. Journal of Agriculture and Food Chemistry, 53, 475–479.

    Article  CAS  Google Scholar 

  • Marchart, E., Krenn, L., & Kopp, B. (2003). Quantification of the flavonoid glycosides in Passiflora incarnata by capillary electrophoresis. Planta Medica, 69, 452–456.

    Article  PubMed  CAS  Google Scholar 

  • Mattoli, L., Cangi, F., Maidecchi, A., et al. (2006). Metabolomic fingerprinting of plant extracts. Journal of Mass Spectrometry, 41, 1534–1545.

    Article  PubMed  CAS  Google Scholar 

  • McDougall, G., Martinussen, I., & Stewart, D. (2008). Towards fruitful metabolomics: High throughput analyses of polyphenol composition in berries using direct infusion mass spectrometry. Journal of Chromatography B, 871, 362–369.

    Article  CAS  Google Scholar 

  • Parejo, I., Jauregui, O., Sanchez-Rabaneda, F., Viladomat, F., Bastida, J., & Codina, C. (2004). Separation and characterization of phenolic compounds in fennel using liquid chromatography-negative electrospray ionization tandem mass spectrometry. Journal of Agriculture and Food Chemistry, 52, 3679–3687.

    Article  CAS  Google Scholar 

  • Raffaelli, A., Moneti, G., Mercati, V., & Toja, E. (1997). Mass spectrometric characterization of flavonoids in extracts from Passiflora incarnata. Journal of Chromatography A, 777, 223–231.

    Article  CAS  Google Scholar 

  • Randriamampionona, D., Diallo, B., Rakotoniriana, F., et al. (2007). Comparative analysis of active constituents in Centella asiatica samples from Madagascar: Application for ex situ conservation and clonal propagation. Fitoterapia, 78, 482–489.

    Article  PubMed  CAS  Google Scholar 

  • Schutz, K., Carle, R., & Schieber, A. (2006). Taraxacum—a review on its phytochemical and pharmacological profile. Journal of Ethnopharmacology, 107, 313–323.

    Article  PubMed  Google Scholar 

  • Singh, B., Kaur, P., Gopichand Singh, R. D., & Ahuja, P. S. (2008). Biology and chemistry of Ginkgo biloba. Fitoterapia, 79, 401–418.

    Article  PubMed  CAS  Google Scholar 

  • Toselli, F., Matthias, A., & Gillam, E. M. (2009). Echinacea metabolism and drug interactions: The case for standardization of a complementary medicine. Life Sciences, 85, 97–106.

    Article  PubMed  CAS  Google Scholar 

  • van der Kooy, F., Maltese, F., Choi, Y. H., Kim, H. K., & Verpoorte, R. (2009). Quality control of herbal material and phytopharmaceuticals with MS and NMR based metabolic fingerprinting. Planta Medica, 75, 763–775.

    Article  PubMed  Google Scholar 

  • Ward, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of American Statistical Association, 58, 236–244.

    Article  Google Scholar 

  • Wichtl, M. (2004). Herbal drugs and phytopharmaceuticals (3rd ed., pp. 152–156). Boca Raton: Medpharm.

    Google Scholar 

  • Zonta, F., Bogoni, P., Masotti, P., & Micali, G. (1995). High-performance liquid chromatographic profiles of aloe constituents and determination of aloin in beverages, with reference to the EEC regulation for flavouring substances. Journal of Chromatography A, 718, 99–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Traldi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1986 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattoli, L., Cangi, F., Ghiara, C. et al. A metabolite fingerprinting for the characterization of commercial botanical dietary supplements. Metabolomics 7, 437–445 (2011). https://doi.org/10.1007/s11306-010-0268-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0268-x

Keywords

Navigation