Skip to main content
Log in

Targeted metabolomics in an intrusive weed, Rumex obtusifolius L., grown under different environmental conditions reveals alterations of organ related metabolite pathway

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

This study was intended to analyze the metabolic pathway of Rumex obtusifolius L. (Broad-leaved dock), destructive weeds worldwide, in relation to major environmental factors (light and temperature). It was found that R. obtusifolius can be classified as plants in accumulating major organic acids such as oxalate in leaves and citrate in stems (Miyagi et al., Metabolomics 6:146–155 2010). The organ specific accumulation of certain metabolites was dissected by metabolomics approach in relation to metabolic pathway. Light or dark experiments showed that in the case of the oxalate accumulation, the major or the most dominated pathway was found to be the citrate-isocitrate-oxalate shunt. Furthermore, under the dark and/or low temperature (5°C) leaves showed sustainable growth with normal accumulation of TCA metabolites. Unlike leaves, there was a different pattern of metabolite accumulation in stems. Other metabolites such as amino acids also showed the organ specific alterations under the different ambient environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Calegario, F. F., Cosso, R. G., Fagian, M. M., Almeida, V., Jardim, W. F., Ježek, P., et al. (2003). Stimulation of potato tuber respiration by cold stress is associated with an increased capacity of both plant uncoupling mitochondrial protein (PUMP) and alternative oxidase. Journal of Bioenergetics and Biomembranes, 35, 211–220.

    Article  CAS  PubMed  Google Scholar 

  • Cavers, P. B., & Harper, J. L. (1964). Rumex obtusifolius L. and R. crispus L. Journal of Ecology, 52, 737–766.

    Article  Google Scholar 

  • Cox, M. C. H., Benschop, J. J., Vreeburg, R. A. M., Wagemaker, C. A. M., Moritz, T., Peeters, A. J. M., et al. (2004). The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiology, 136, 2948–2960.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C. H., Vanacker, H., Gomez, L. D., & Harbinson, J. (2002). Regulation of photosynthesis and antioxidant metabolism in maize leaves at optimal and chilling temperatures: Review. Plant Physiology and Biochemistry, 40, 659–668.

    Article  CAS  Google Scholar 

  • Franceschi, V. R., & Nakata, P. A. (2005). Calcium oxalate in plants: Formation and function. Annual Review of Plant Biology, 56, 41–71.

    Article  CAS  PubMed  Google Scholar 

  • Guy, C., Kaplan, F., Kopka, J., Selbig, J., & Hincha, D. K. (2008). Metabolomics of temperature stress. Physiologia Plantarum, 132, 220–235.

    CAS  PubMed  Google Scholar 

  • Holm, L. G., Plucknett, D. L., Pancho, J. V., & Herberger, J. P. (1977). Rumex crispus and Rumex obtusifolius. In L. G. Holm (Ed.), The world’s worst weeds: Distribution and biology (pp. 401–408). Honolulu: University Press of Hawaii.

    Google Scholar 

  • Hongo, A. (1986). Infestation of Rumex obtusifolius L., distribution pattern of its individual plants in sown grasslands in eastern Hokkaido. Weed Research, Japan, 31, 300–315.

    Google Scholar 

  • Hongo, A. (1989). Survival and growth of seedling of Rumex obtusifolius L. & Rumex crispus L. in newly sown grassland. Weed Research, 29, 7–12.

    Article  Google Scholar 

  • Horie, H., & Nemoto, M. (1990). Comparison of the growth response to phosphorus and aluminum concentrations in four Rumex species. Weed Research, Japan, 35, 340–345.

    Google Scholar 

  • Kaplan, F., Kopka, J., Haskell, D. W., Zhao, W., Cameron Schiller, K., Gatzke, N., et al. (2004). Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiology, 136, 4159–4168.

    Article  CAS  PubMed  Google Scholar 

  • Ke, W., Xiong, Z. T., Chen, S., & Chen, J. (2007). Effect of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environmental and Experimental Botany, 59, 59–67.

    Article  CAS  Google Scholar 

  • Löve, A., & Kapoor, B. M. (1967). A chromosome atlas of the collective genus Rumex. Cytologia, 32, 328–342.

    Google Scholar 

  • Makuchi, T., & Sakai, H. (1984). Seedling survival and flowering of Rumex obtusifolius L. in various habitats. Weed Research, Japan, 29, 123–130.

    Google Scholar 

  • Mclaren, J. S., & Smith, H. (1978). Phytochrome control of the growth and development of Rumex obtusifolius under simulated canopy light environments. Plant, Cell, and Environment, 1, 61–67.

    Article  Google Scholar 

  • Miyagi, A., Takahashi, H., Takahara, K., Hirabayashi, T., Nishimura, Y., Tezuka, T., et al. (2010). Principal component and hierarchical clustering analysis of metabolites in destructive weeds; polygonaceous plants. Metabolomics, 6, 146–155.

    Article  CAS  Google Scholar 

  • Pino, J., Haggar, R. J., Sans, F. X., Masalles, R. M., Hamilton, R. N. S., & Sackville-Hamilton, R. N. (1995). Clonal growth and fragment regeneration of Rumex obtusifolius L. Weed Research, Japan, 35, 141–148.

    Article  Google Scholar 

  • Proietti, S., Moscatello, S., Famiani, F., & Battistelli, A. (2009). Increase of ascorbic acid content and nutritional quality in spinach leaves during physiological acclimation to low temperature. Plant Physiology and Biochemistry, 47, 717–723.

    Article  CAS  PubMed  Google Scholar 

  • Sanchez, D. H., Siahpoosh, M. R., Roessner, U., Udvardi, M., & Kopka, J. (2008). Plant metabolomics reveals conserved and divergent metabolic responses to salinity. Physiologia Plantarum, 132, 209–219.

    CAS  PubMed  Google Scholar 

  • Shulaev, V., Cortes, D., Miller, G., & Mittler, R. (2008). Metabolomics for plant stress response. Physiologia Plantarum, 132, 199–208.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Hayashi, M., Goto, F., Sato, S., Soga, T., Nishioka, T., et al. (2006a). Evaluation of metabolic alteration in transgenic rice overexpressing dihydrofavonol-4-reductase. Annals of Botany, 98, 819–825.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Watanabe, A., Tanaka, A., Hashida, S., Kawai-Yamada, M., Sonoike, K., et al. (2006b). Chloroplast NAD kinase is essential for energy transduction though the xanthophylls cycle in photosynthesis. Plant and Cell Physiology, 47, 1678–1682.

    Article  CAS  PubMed  Google Scholar 

  • Tolrà, R. P., Poschenrieder, C., Luppi, B., & Barceló, J. (2005). Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environmental and Experimental Botany, 54, 231–238.

    Article  Google Scholar 

  • Toole, E. H., & Brown, E. (1946). Final results of the Duvel buried seed experiment. Journal of Agricultural Research, 72, 201–206.

    Google Scholar 

  • Totterdell, S., & Roberts, E. H. (1979). Effects of low temperature on the loss of innate dormancy and the development of induced dormancy in seeds of Rumex obtusifolius L. and Rumex crispus L. Plant, Cell and Environment, 2, 131–137.

    Article  Google Scholar 

  • Urbanczyk-Wochniak, E., Baxter, C., Kolbe, A., Kopka, J., Sweetlove, L. J., & Fernie, A. R. (2005). Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta, 221, 891–903.

    Article  CAS  PubMed  Google Scholar 

  • Van Assche, J. A., & Vanlerberghe, K. A. (1989). The role of temperature on the dormancy cycle of seeds of Rumex obtusifolius L. Functional Ecology, 3, 107–115.

    Article  Google Scholar 

  • Voesenek, L. A. C. J., Colmer, T. D., Pierik, R., Millenaar, F. F., & Peeters, A. J. M. (2006). How plants cope with complete submergence. New Phytologist, 170, 213–226.

    Article  CAS  PubMed  Google Scholar 

  • Yang, M. T., Chen, S. L., Lin, C. Y., & Chen, Y. M. (2005). Chilling stress suppresses chloroplast development and nuclear gene expression in leaves of mung bean seedlings. Planta, 221, 374–385.

    Article  CAS  PubMed  Google Scholar 

  • Yin, G., Sun, H., Xin, X., Qin, G., Liang, Z., & Jing, X. (2009). Mitochondrial damage in the soybean seed axis during imbibition at chilling temperatures. Plant Cell Physiology, 50, 1305–1318.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the Program for Promotion of Basic and Applied Researches for Innovations in Bio-oriented Industry (BRAIN) and the CREST, JST, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirofumi Uchimiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data

Relationship between citrate and organic acids or amino acids in stems of R. obtusifolius grown under either light or dark. Data were taken from Fig. 6. W; week(s). *; P < 0.05, **; P < 0.01. (PDF 25 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyagi, A., Takahara, K., Takahashi, H. et al. Targeted metabolomics in an intrusive weed, Rumex obtusifolius L., grown under different environmental conditions reveals alterations of organ related metabolite pathway. Metabolomics 6, 497–510 (2010). https://doi.org/10.1007/s11306-010-0220-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-010-0220-0

Keywords

Navigation