Skip to main content
Log in

1H NMR and GC-MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Rhizoctonia solani AG-3 is a soilborne plant pathogen that forms resting vegetative structures called sclerotia. These compact structures are crucial to the pathogen’s survival and pathogenesis. The metabolic changes occurring during sclerotia development were monitored using proton nuclear magnetic resonance (1H NMR) spectroscopy and gas chromatography–mass spectrometry (GC-MS). The validation, discrimination, and the establishment of correlative relationships between metabolite signals were performed by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results of the analyses suggested that out of the 116 compounds that were simultaneously analyzed and compared using GC-MS, α-α-trehalose, d-glucose, 9-(Z)-octadecenoic and 9,12-octadecadienoic acids, xylitol, and glucitol were key metabolites that were highly dependent on the developmental stage of the sclerotia contributing to their discrimination and classification. Furthermore, the application of 1H NMR and GC-MS metabolic fingerprinting on the same biological sample provided complementary information illustrating the value of this integrated approach in the study of metabolic changes in fungal structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abo Ellil, A. H. A. (1999). Oxidative stress in relation to lipid peroxidation, sclerotial development and melanin production by Sclerotium rolfsii. Journal of Phytopathology, 147, 561–566.

    Article  CAS  Google Scholar 

  • Albertorio, F., Chapa, V. A., Chen, X., Diaz, A. J., & Cremer, P. S. (2007). The α, α-(1 → 1) linkage of trehalose is key to anhydrobiotic preservation. Journal of the American Chemical Society, 129, 10567–10574.

    Article  CAS  PubMed  Google Scholar 

  • Aliferis, K. A., & Chrysayi-Tokousbalides, M. (2006). Metabonomic strategy for the investigation of the mode of action of the phytotoxin (5S, 8R, 13S, 16R)-(–)-pyrenophorol using 1H nuclear magnetic resonance fingerprinting. Journal of Agricultural and Food Chemistry, 54, 1687–1692.

    Article  CAS  PubMed  Google Scholar 

  • Allwood, J. W., Ellis, D. I., & Goodacre, R. (2008). Metabolomic technologies and their application to the study of plants and plant–host interactions. Physiologia Plantarum, 132, 117–135.

    CAS  PubMed  Google Scholar 

  • Aoki, H., Sassa, T., & Tamura, T. (1963). Phytotoxic metabolites of Rhizoctonia solani. Nature, 200, 575.

    Article  CAS  Google Scholar 

  • Argüelles, J. C. (2000). Physiological roles of trehalose in bacteria and yeasts: A comparative analysis. Archives of Microbiology, 174, 217–224.

    Article  PubMed  Google Scholar 

  • Avonce, N., Mendoza-Vargas, A., Morett, E., & Iturriaga, G. (2006). Insights on the evolution of trehalose biosynthesis. BMC Evolutionary Biology, 6, 109.

    Article  PubMed  Google Scholar 

  • Banville, G. J., Carling, D. E., & Otrysko, B. E. (1996). Rhizoctonia disease in potato reaction. In S. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology, and disease control (pp. 321–330). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Börner, J., Buchinger, S., & Schomburg, D. (2007). A high-throughput method for microbial metabolome analysis using gas chromatography/mass spectrometry. Analytical Biochemistry, 367, 143–151.

    Article  PubMed  Google Scholar 

  • Cabib, E., & Leloir, L. F. (1958). The biosynthesis of trehalose phosphate. The Journal of Biological Chemistry, 231, 259–275.

    CAS  PubMed  Google Scholar 

  • Carling, D. E. (1996). Grouping Rhizoctonia solani by hyphal anastomosis reaction. In S. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology, and disease control (pp. 37–47). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Carling, D. E., Baird, R. E., Gitaitis, R. D., Brainard, K. A., & Kuninaga, S. (2002). Characterization of AG-13, a newly reported anastomosis group of Rhizoctonia solani. Phytopathology, 92, 893–899.

    Article  CAS  PubMed  Google Scholar 

  • Carling, D. E., Liner, R. H., & Westphale, P. C. (1989). Symptoms signs and yield reduction associated with Rhizoctonia disease of potato induced by tuberborne inoculum of Rhizoctonia solani AG-3. American Potato Journal, 66, 693–701.

    Article  Google Scholar 

  • Castrillo, J. I., Hayes, A., Mohammed, S., Gaskell, S. J., & Oliver, S. G. (2003). An optimized protocol for metabolome analysis in yeast using direct infusion electrospray mass spectrometry. Phytochemistry, 62, 929–937.

    Article  CAS  PubMed  Google Scholar 

  • Chet, I., & Henis, Y. (1975). Sclerotial morphogenesis in fungi. Annual Review of Phytopathology, 13, 169–192.

    Article  Google Scholar 

  • Christensen, D., Foged, C., Rosenkrands, I., Nielsen, H. M., Andersen, P., & Agger, E. M. (2007). Trehalose preserves DDA/TDB liposomes and their adjuvant effect during freeze-drying. Biochimica et Biophysica Acta, 1768, 2120–2129.

    Article  CAS  PubMed  Google Scholar 

  • Defernez, M., & Colquhoun, I. J. (2003). Factors affecting the robustness of metabolite fingerprinting using 1H NMR spectra. Phytochemistry, 62, 1009–1017.

    Article  CAS  PubMed  Google Scholar 

  • Desbrosses, G. G., Kopka, J., & Udvardi, M. K. (2005). Lotus japonicus metabolic profiling. Development of gas chromatography mass spectrometry resources for the study of plant–microbe interactions. Plant Physiology, 137, 1302–1318.

    Article  CAS  PubMed  Google Scholar 

  • Dunn, W. B. (2008). Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes. Physical Biology, 5, 1–24.

    Article  Google Scholar 

  • Efron, B., & Gong, G. (1983). A leisurely look at the bootstrap, the Jack-knife, and cross-validation. American Statistician, 37, 36–48.

    Article  Google Scholar 

  • Eriksson, L., Johansson, E., Kettaneh-Wold, N., & Wold, S. (2001). Multi- and megavariate data analysis, Principles and applications. Umeå, Sweden: Umetrics Academy.

    Google Scholar 

  • Fiehn, O., Kopka, J., Dormann, P., Altmann, T., Trethewey, R. N., & Willmitzer, L. (2000). Metabolite profiling for plant functional genomics. Nature Biotechnology, 18, 1157–1161.

    Article  CAS  PubMed  Google Scholar 

  • Forgue, P., Halouska, S., Werth, M., Xu, K., Harris, S., & Powers, R. (2006). NMR metabolic profiling of Aspergillus nidulans to monitor drug and protein activity. Journal of Proteome Research, 5, 1916–1923.

    Article  CAS  PubMed  Google Scholar 

  • Foster, A. J., Jenkinson, J. M., & Talbot, N. J. (2003). Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO Journal, 22, 225–235.

    Article  CAS  PubMed  Google Scholar 

  • Frank, J. A., & Francis, S. K. (1976). The effect of a Rhizoctonia solani phytotoxin on potatoes. Canadian Journal of Botany, 54, 2536–2540.

    Article  CAS  Google Scholar 

  • Georgiou, C. D., & Petropoulou, K. P. (2001). Effect of the antioxidant ascorbic acid on sclerotial differentiation in Rhizoctonia solani. Plant Pathology, 50, 594–600.

    Article  CAS  Google Scholar 

  • Gottlieb, D., & Van Etten, J. L. (1966). Changes in fungi with age I. Chemical composition of Rhizoctonia solani and Sclerotium bataticola. Journal of Bacteriology, 91, 161–168.

    CAS  PubMed  Google Scholar 

  • Huang, H. C. (1983). Histology, amino acid leakage, and chemical composition of normal and abnormal sclerotia of Sclerotinia sclerotiorum. Canadian Journal of Botany, 61, 1443–1447.

    CAS  Google Scholar 

  • Iacobellis, N. S., & DeVay, J. E. (1987). Studies on pathogenesis of Rhizoctonia solani in beans: An evaluation of the possible role of phenylacetic acid and its hydroxy derivatives as phytotoxins. Physiological Plant Pathology, 30, 421–432.

    Article  CAS  Google Scholar 

  • Iturriaga, G. (2008). The LEA proteins and trehalose loving couple: A step forward in anhydrobiotic engineering. Biochemical Journal, 410, e1–e2.

    Article  CAS  PubMed  Google Scholar 

  • Jager, G., Velvis, H., Lamers, J. G., Mulder, A., & Roosjen, Js. (1991). Control of Rhizoctonia solani on potatoes by biological, chemical and integrated measures. Potato Research, 34, 269–284.

    Article  Google Scholar 

  • Krishnan, P., Kruger, N. J., & Ratcliffe, R. G. (2005). Metabolite fingerprinting and profiling in plants using NMR. Journal of Experimental Botany, 56, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Lucini, E. I., Zunino, M. P., López, M. L., & Zygadlo, J. A. (2006). Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. Journal of Phytopathology, 154, 441–446.

    Article  CAS  Google Scholar 

  • Mandava, N. B., Orellana, R. G., Warthen, J. D., Jr., et al. (1980). Phytotoxins in Rhizoctonia solani: Isolation and biological activity of m-hydroxy- and m-methoxyphenylacetic acids. Journal of Agricultural and Food Chemistry, 28, 71–75.

    Article  CAS  PubMed  Google Scholar 

  • Manners, J. M., Maclean, D. J., & Scott, K. J. (1984). Hexitols as major intermediates of glucose assimilation by mycelium of Puccinia graminis. Archives of Microbiology, 139, 158–161.

    Article  CAS  Google Scholar 

  • Mas, S., Villas-Boas, S. G., Hansen, M. E., Akesson, M., & Nielsen, J. (2007). A comparison of direct infusion MS and GC-MS for metabolic footprinting of yeast mutants. Biotechnology and Bioengineering, 96, 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  • Mohler, R. E., Dombek, K. M., Hoggard, J. C., Pierce, K. M., Young, E. T., & Synovec, R. E. (2007). Comprehensive analysis of yeast metabolite GCxGC-TOFMS data: Combining discovery-mode and deconvolution chemometric software. Analyst, 132, 756–767.

    Article  CAS  PubMed  Google Scholar 

  • Noverr, M. C., & Huffnagle, G. B. (2004). Regulation of Candida albicans morphogenesis by fatty acid metabolites. Infection and Immunity, 72, 6206–6210.

    Article  CAS  PubMed  Google Scholar 

  • Ott, K. H., Aranibar, N., Singh, B., & Stockton, G. W. (2003). Metabonomics classifies pathways affected by bioactive compounds. Artificial neural network classification of NMR spectra of plant extracts. Phytochemistry, 62, 971–985.

    Article  CAS  PubMed  Google Scholar 

  • Parmeter, J. R., Jr, & Whitney, H. S. (1970). Taxonomy and nomenclature of the imperfect state. In J. R. Parmeter Jr (Ed.), Rhizoctonia solani, biology and pathology (pp. 7–19). California: University of California Press.

    Google Scholar 

  • Patsoukis, N., & Georgiou, C. D. (2007). Effect of glutathione biosynthesis-related modulators on the thiol redox state enzymes and on sclerotial differentiation of filamentous phytopathogenic fungi. Mycopathologia, 163, 335–347.

    Article  CAS  PubMed  Google Scholar 

  • Priyatmojo, A., Yamauchi, R., Carling, D. E., Kageyama, K., & Hyakumachi, M. (2002). Differentiation of three varieties of Rhizoctonia circinata; var. circinata, var. oryzae and var. zeae on the basis of cellular fatty acid composition. Journal of Phytopathology, 150, 1–5.

    Article  CAS  Google Scholar 

  • Ratcliffe, R. G., & Shachar-Hill, Y. (2001). Probing plant metabolism with NMR. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 499–526.

    Article  CAS  PubMed  Google Scholar 

  • Secor, G. A., & Gudmestad, N. C. (1999). Managing fungal diseases of potato. Canadian Journal of Plant Pathology, 21, 213–221.

    CAS  Google Scholar 

  • Siddiqui, I. A., & Shaukat, S. S. (2005). Phenylacetic acid-producing Rhizoctonia solani represses the biosynthesis of nematicidal compounds in vitro and influences biocontrol of Meloidogyne incognita in tomato by Pseudomonas fluorescens strain CHA0 and its GM derivatives. Journal of Applied Microbiology, 98, 43–55.

    Article  CAS  PubMed  Google Scholar 

  • Smedsgaard, J., & Nielsen, J. (2004). Metabolite profiling of fungi and yeast: from phenotype to metabolome by MS and informatics. Journal of Experimental Botany, 56, 273–286.

    Article  PubMed  Google Scholar 

  • Sorrell, T. C., Wright, L. C., Malik, R., & Himmelreich, U. (2006). Application of proton nuclear magnetic resonance spectroscopy to the study of Cryptococcus and cryptococcosis. FEMS Yeast Research, 6, 558–566.

    Article  CAS  PubMed  Google Scholar 

  • Sumner, D. R. (1996). Sclerotia formation by Rhizoctonia species and their survival. In B. Sneh, S. Jabaji-Hare, S. Neate, & G. Dijst (Eds.), Rhizoctonia species: Taxonomy, molecular biology, ecology, pathology and disease control (pp. 207–217). The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Takahashi, H., Kai, K., Shinbo, Y., et al. (2008). Metabolomics approach for determining growth-specific metabolites based on Fourier transform ion cyclotron resonance mass spectrometry. Analytical and Bioanalytical Chemistry, 391, 2769–2782.

    Article  CAS  PubMed  Google Scholar 

  • Van den Boogert, P. H. J. F., & Luttikholt, A. J. G. (2004). Compatible biological and chemical control systems for Rhizoctonia solani in potato. European Journal of Plant Pathology, 110, 111–118.

    Article  Google Scholar 

  • Ward, J. L., Harris, C., Lewis, J., & Beale, M. H. (2003). Assessment of 1H NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry, 62, 949–957.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J.-H., & Keller, N. (2005). Regulation of secondary metabolism in filamentous fungi. Annual Review of Phytopathology, 43, 437–458.

    Article  CAS  PubMed  Google Scholar 

  • Zervoudakis, G., Tairis, N., Salahas, G., & Georgiou, C. D. (2003). β-carotene production and sclerotial differentiation in Sclerotinia minor. Mycological Research, 107, 624–631.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. W.D. Marshall for providing access to GC-MS instrument and Dr. T. Sprules, the Quebec/Eastern Canada High Field NMR Facility, for her assistance with the NMR spectra. Funding for this was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) discovery Grants and a Post-doctoral fellowship to Dr. K. Aliferis funded by the Fonds Québécois de la Recherche sur la Nature et les Technologies (FQRNT) and McGill University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Jabaji.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11306_2009_180_MOESM1_ESM.jpg

Predicted 1H NMR spectra of representative compounds identified by GC-MS in sclerotial extracts of Rhizoctonia solani using the ACD/C+H NMR Predictor and Database v.12.01 (ACD/Labs) (JPG 1,568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliferis, K.A., Jabaji, S. 1H NMR and GC-MS metabolic fingerprinting of developmental stages of Rhizoctonia solani sclerotia. Metabolomics 6, 96–108 (2010). https://doi.org/10.1007/s11306-009-0180-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-009-0180-4

Keywords

Navigation