Skip to main content
Log in

Assignment of MS-based metabolomic datasets via compound interaction pair mapping

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Assignment of physical meaning to mass spectrometry (MS) data peaks is an important scientific challenge for metabolomics investigators. Improvements in instrumental mass accuracy reduce the number of spurious database matches, however, this alone is insufficient for accurate, unique high-throughput assignment. We present a method for clustering MS instrumental artifacts and a stochastic local search algorithm for the automated assignment of large, complex MS-based metabolomic datasets. Artifact peaks and their associated source peaks are grouped into “instrumental clusters.” Instrumental clusters, peaks grouped together by shared peak shape in the temporal domain, serve as a guide for the number of assignments necessary to completely explain a given dataset. We refine mass only assignments through the intersection of peak correlation pairs with a database of biochemically relevant interaction pairs. Further refinement is achieved through a stochastic local search optimization algorithm that selects individual assignments for each instrumental cluster. The algorithm works by choosing the peak assignment that maximally explains the connectivity of a given cluster. We demonstrate that this methodology provides a significant advantage over standard methods for the assignment of metabolites in a UPLC-MS diabetes dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arkin, A., Shen, P., & Ross, R. (1997). A test case of correlation metric construction of a reaction pathway from measurements. Science, 277, 1275–1279.

    Article  CAS  Google Scholar 

  • Breitling, R., Ritchie, S., Goodenowe, D., Stewart, M. L., & Barrett, M. P. (2006a). Ab initio prediction of metabolic networks using Fourier transform mass spectrometry data. Metabolomics, 2, 155–164.

    Article  CAS  Google Scholar 

  • Breitling, R., Pitt, A. R., & Barrett, M. P. (2006b). Precision mapping of the metabolome. Trends in Biotechnology, 24, 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Dettmer, K., Aronov, P. A., & Hammock, B. D. (2007). Mass spectrometry-based metabolomics. Mass Spectrometry Reviews, 26, 51–78.

    Article  PubMed  CAS  Google Scholar 

  • Forster, J., Gomber, A. K., & Nielsen, J. (2002). A functional genomics approach using metabolomics and in silico pathway analysis. Biotechnology and Bioengineering, 79, 703–712.

    Article  PubMed  CAS  Google Scholar 

  • Goto, S., Nishioka, T., & Kanehisa, M. (1998). LIGAND: Chemical database for enzyme reactions. Bioinformatics, 14, 591–599.

    Article  PubMed  CAS  Google Scholar 

  • Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., Itoh, M., Kawashima, S., Katayama, T., Araki, M., & Hirakawa, M. (2006). From genomics to chemical genomics: New developments in KEGG. Nucleic Acids Research, 34, D354–D357.

    Article  PubMed  CAS  Google Scholar 

  • Kell, D. B. (2004). Metabolomics and systems biology: Making sense of the soup. Current Opinion in Microbiology, 7, 296–307.

    Article  PubMed  CAS  Google Scholar 

  • Kind, T., & Fiehn, O. (2006). Metabolomic database annotations via query of elemental compositions: Mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics, 7, 234.

    Article  PubMed  CAS  Google Scholar 

  • Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmuller, E., Dormann, P., Weckwerth, W, Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A. R., & Steinhauser, D. (2005). GMD@CSB.DB: The Golm metabolome database. Bioinformatics, 21, 1635–1638.

    Article  PubMed  CAS  Google Scholar 

  • Mendes, P. (2002). Emerging bioinformatics for the metabolome. Briefings in Bioinformatics, 3, 134–145.

    Article  PubMed  CAS  Google Scholar 

  • Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R., & Siuzdak, G. (2006). XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Analytical Chemistry, 78, 779–787.

    Article  PubMed  CAS  Google Scholar 

  • Steuer, R. (2006). On the analysis and interpretation of correlations in metabolomic data. Briefings in Bioinformatics, 7, 151–158.

    Article  PubMed  CAS  Google Scholar 

  • Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003a). Observing and interpreting correlations in metabolomic networks. Bioinformatics, 19, 1019–1026.

    Article  PubMed  CAS  Google Scholar 

  • Steuer, R., Kurths, J., Fiehn, O., & Weckwerth, W. (2003b). Interpreting correlations in metabolomic networks. Biochemical Society Transactions, 31, 1476–1478.

    Article  PubMed  CAS  Google Scholar 

  • Want, E. J., Cravatt, B. F., & Siuzdak, G. (2005). The expanding role of mass spectrometry in metabolite profiling and characterization. ChemBioChem, 6, 1941–1951.

    Article  PubMed  CAS  Google Scholar 

  • Witten, I., & Frank E. (2000). Data mining: Practical machine learning tools and techniques with Java implementations. San Francisco: Morgan Kaufmann Publishers.

    Google Scholar 

Download references

Acknowledgments

The authors thank Mike Hansen for providing the mouse urine samples and Mark Hodson for providing the LC method for LC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey T. Gipson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gipson, G.T., Tatsuoka, K.S., Sokhansanj, B.A. et al. Assignment of MS-based metabolomic datasets via compound interaction pair mapping. Metabolomics 4, 94–103 (2008). https://doi.org/10.1007/s11306-007-0096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-007-0096-9

Keywords

Navigation