Skip to main content

Advertisement

Log in

Profiling of central metabolism in human cancer cells by two-dimensional NMR, GC-MS analysis, and isotopomer modeling

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Tracking metabolic profiles has the potential to reveal crucial enzymatic steps that could be targeted in the drug discovery process. It is of special importance for various types of cancer known to be associated with substantial rewiring of metabolic networks. Here we introduce an integrated approach for the analysis of metabolome that allows us to simultaneously assess pathway activities (fluxes) and concentrations of a large number of the key components involved in central metabolism of human cells. This is accomplished by in vivo labeling with [U-13C]glucose followed by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS) analysis. A comprehensive isotopomer model was developed, which enabled us to compare fluxes through the key central metabolic pathways including glycolysis, pentose phosphate pathway, tricarboxylic acid cycle, anaplerotic reactions, and biosynthetic pathways of fatty acids and amino acids. The validity and strength of this approach is illustrated by its application to a number of perturbations to breast cancer cells, including exposure to hypoxia, drug treatment, and tumor progression. We observed significant differences in the activities of specific metabolic pathways resulting from these perturbations and providing new mechanistic insights. Based on these findings we conclude that the developed metabolomic approach constitutes a promising analytical tool for revealing specific metabolic phenotypes in a variety of cell types and pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anderson, M. S., & Raetz, C. R. (1987). Biosynthesis of lipid A precursors in Escherichia coli. A cytoplasmic acyltransferase that converts UDP-N-acetylglucosamine to UDP-3-O-(R-3-hydroxymyristoyl)-N-acetylglucosamine. Journal of Biological Chemistry, 262(11), 5159–5169.

    PubMed  CAS  Google Scholar 

  • Baron, A., Migita, T., Tang, D., & Loda, M. (2004). Fatty acid synthase: A metabolic oncogene in prostate cancer? Journal of Cellular Biochemistry, 91(1), 47–53.

    Article  PubMed  CAS  Google Scholar 

  • Boren, J., Cascante, M., Marin, S., Comin-Anduix, B., Centelles, J. J., Lim, S., Bassilian, S., Ahmed, S., Lee, W. N., & Boros, L. G. (2001). Gleevec (STI571) influences metabolic enzyme activities and glucose carbon flow toward nucleic acid and fatty acid synthesis in myeloid tumor cells. Journal of Biological Chemistry, 276(41), 37747–37753.

    PubMed  CAS  Google Scholar 

  • Boren, J., Lee, W. N., Bassilian, S., Centelles, J. J., Lim, S., Ahmed, S., Boros, L. G., & Cascante, M. (2003). The stable isotope-based dynamic metabolic profile of butyrate-induced HT29 cell differentiation. Journal of Biological Chemistry, 278(31), 28395–28402.

    Article  PubMed  CAS  Google Scholar 

  • Boros, L. G., Cascante, M., & Lee, W. N. (2002). Metabolic profiling of cell growth and death in cancer: Applications in drug discovery. Drug Discovery Today, 7(6), 364–372.

    Article  PubMed  CAS  Google Scholar 

  • Bristow, R. G., Hardy, P. A., & Hill, R. P. (1990). Comparison between in vitro radiosensitivity and in vivo radioresponse of murine tumor cell lines. I: Parameters of in vitro radiosensitivity and endogenous cellular glutathione levels. International Journal for Radiation Oncology and Biological Physics, 18(1), 133–145.

    CAS  Google Scholar 

  • Cline, G. W., Lepine, R. L., Papas, K. K., Kibbey, R. G., & Shulman, G. I. (2004). 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. Journal of Biological Chemistry, 279(43), 44370–44375.

    Article  PubMed  CAS  Google Scholar 

  • Dauner, M., Bailey, J. E., & Sauer, U. (2001). Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnology and Bioengineering, 76(2), 144–156.

    Article  PubMed  CAS  Google Scholar 

  • Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., & Bax, A. (1995). NMRPipe: A multidimensional spectral processing system based on UNIX pipes. Journal of Biomolecular NMR, 6(3), 277–293.

    Article  PubMed  CAS  Google Scholar 

  • Eisenreich, W., Schwarzkopf, B., & Bacher, A. (1991). Biosynthesis of nucleotides, flavins, and deazaflavins in Methanobacterium thermoautotrophicum. Journal of Biological Chemistry, 266(15), 9622–9631.

    PubMed  CAS  Google Scholar 

  • Fernandez, C. A., & Des Rosiers, C. (1995). Modeling of liver citric acid cycle and gluconeogenesis based on 13C mass isotopomer distribution analysis of intermediates. Journal of Biological Chemistry, 270(17), 10037–10042.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, C. P., Bode, B. P., & Souba, W. W. (1998). Adaptive alterations in cellular metabolism with malignant transformation. Annals of Surgery, 227(5), 627–634; discussion 634–636.

    Google Scholar 

  • Fischer, E., & Sauer, U. (2003). Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. European Journal of Biochemistry, 270(5), 880–891.

    Article  PubMed  CAS  Google Scholar 

  • Gribbestad, I. S., Petersen, S. B., Fjosne, H. E., Kvinnsland, S., & Krane, J. (1994). 1H NMR spectroscopic characterization of perchloric acid extracts from breast carcinomas and non-involved breast tissue. NMR in Biomedicine, 7(4), 181–194.

    Article  PubMed  CAS  Google Scholar 

  • Gribbestad, I. S., Sitter, B., Lundgren, S., Krane, J., & Axelson, D. (1999). Metabolite composition in breast tumors examined by proton nuclear magnetic resonance spectroscopy. Anticancer Research, 19(3A), 1737–1746.

    PubMed  CAS  Google Scholar 

  • Griffin, J. L., & Shockcor, J. P. (2004). Metabolic profiles of cancer cells. Nature Reviews Cancer, 4(7), 551–561.

    Article  PubMed  CAS  Google Scholar 

  • Griffith, O. W., & Meister, A. (1985). Origin and turnover of mitochondrial glutathione. Proceedings of the National Academy of Sciences of the USA, 82(14), 4668–4672.

    Article  PubMed  CAS  Google Scholar 

  • Griffiths, J. R., McSheehy, P. M., Robinson, S. P., Troy, H., Chung, Y. L., Leek, R. D., Williams, K. J., Stratford, I. J., Harris, A. L., & Stubbs, M. (2002). Metabolic changes detected by in vivo magnetic resonance studies of HEPA-1 wild-type tumors and tumors deficient in hypoxia-inducible factor-1beta (HIF-1beta): Evidence of an anabolic role for the HIF-1 pathway. Cancer Research, 62(3), 688–695.

    PubMed  CAS  Google Scholar 

  • Helmlinger, G., Sckell, A., Dellian, M., Forbes, N. S., & Jain, R. K. (2002). Acid production in glycolysis-impaired tumors provides new insights into tumor metabolism. Clinical Cancer Research, 8(4), 1284–1291.

    PubMed  CAS  Google Scholar 

  • Hosking, L. K., Whelan, R. D., Shellard, S. A., Bedford, P., & Hill, B. T. (1990). An evaluation of the role of glutathione and its associated enzymes in the expression of differential sensitivities to antitumour agents shown by a range of human tumour cell lines. Biochemical Pharmacology, 40(8), 1833–1842.

    Article  PubMed  CAS  Google Scholar 

  • Hua, Q., Yang, C., Baba, T., Mori, H., & Shimizu, K. (2003). Responses of the central metabolism in Escherichia coli to phosphoglucose isomerase and glucose-6-phosphate dehydrogenase knockouts. Journal of Bacteriology, 185(24), 7053–7067.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, F. M., Storey, C. J., Sherry, A. D., & Malloy, C. R. (1996). 13C isotopomer model for estimation of anaplerotic substrate oxidation via acetyl-CoA. American Journal of Physiology, 271(4 Pt 1), E788–E799.

    PubMed  CAS  Google Scholar 

  • Katz-Brull, R., Seger, D., Rivenson-Segal, D., Rushkin, E., & Degani, H. (2002). Metabolic markers of breast cancer: Enhanced choline metabolism and reduced choline-ether-phospholipid synthesis. Cancer Research, 62(7), 1966–1970.

    PubMed  CAS  Google Scholar 

  • Knowles, L. M., Axelrod, F., Browne, C. D., & Smith, J. W. (2004). A fatty acid synthase blockade induces tumor cell-cycle arrest by down-regulating Skp2. Journal of Biological Chemistry, 279(29), 30540–30545.

    Article  PubMed  CAS  Google Scholar 

  • Kridel, S. J., Axelrod, F., Rozenkrantz, N., & Smith, J. W. (2004). Orlistat is a novel inhibitor of fatty acid synthase with antitumor activity. Cancer Research, 64(6), 2070–2075.

    Article  PubMed  CAS  Google Scholar 

  • Kuhajda, F. P. (2000). Fatty-acid synthase and human cancer: New perspectives on its role in tumor biology. Nutrition, 16(3), 202–208.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot, A., & Gopher, A. (1994). Cerebral metabolic compartmentation. Estimation of glucose flux via pyruvate carboxylase/pyruvate dehydrogenase by 13C NMR isotopomer analysis of D-[U-13C]glucose metabolites. Journal of Biological Chemistry, 269(44), 27198–27208.

    PubMed  CAS  Google Scholar 

  • Lee, F. Y., Siemann, D. W., & Sutherland, R. M. (1989). Changes in cellular glutathione content during adriamycin treatment in human ovarian cancer – a possible indicator of chemosensitivity. British Journal of Cancer, 60(3), 291–298.

    PubMed  CAS  Google Scholar 

  • Lee, W. N., Bassilian, S., Guo, Z., Schoeller, D., Edmond, J., Bergner, E. A., & Byerley, L. O. (1994). Measurement of fractional lipid synthesis using deuterated water (2H2O) and mass isotopomer analysis. American Journal of Physiology, 266(3 Pt 1), E372–E383.

    PubMed  CAS  Google Scholar 

  • Lehtimaki, K. K., Valonen, P. K., Griffin, J. L., Vaisanen, T. H., Grohn, O. H., Kettunen, M. I., Vepsalainen, J., Yla-Herttuala, S., Nicholson, J., & Kauppinen, R. A. (2003). Metabolite changes in BT4C rat gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death as studied by 1H NMR spectroscopy in vivo, ex vivo, and in vitro. Journal of Biological Chemistry, 278(46), 45915–45923.

    Article  PubMed  Google Scholar 

  • Lu, D., Mulder, H., Zhao, P., Burgess, S. C., Jensen, M. V., Kamzolova, S., Newgard, C. B., & Sherry, A. D. (2002). 13C NMR isotopomer analysis reveals a connection between pyruvate cycling and glucose-stimulated insulin secretion (GSIS). Proceedings of the National Academy of Sciences of the USA, 99(5), 2708–2713.

    Article  PubMed  CAS  Google Scholar 

  • Maharjan, R. P., & Ferenci, T. (2003). Global metabolite analysis: the influence of extraction methodology on metabolome profiles of Escherichia coli. Analytical Biochemistry, 313(1), 145–154.

    Article  PubMed  Google Scholar 

  • Malloy, C. R., Sherry, A. D., & Jeffrey, F. M. (1988). Evaluation of carbon flux and substrate selection through alternate pathways involving the citric acid cycle of the heart by 13C NMR spectroscopy. Journal of Biological Chemistry, 263(15), 6964–6971.

    PubMed  CAS  Google Scholar 

  • Meister, A. (1991). Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacology & Therapeutics, 51(2), 155–194.

    Article  CAS  Google Scholar 

  • Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.

    Article  PubMed  CAS  Google Scholar 

  • Moreno, A., Rey, M., Montane, J. M., Alonso, J., & Arus, C. (1993). 1H NMR spectroscopy of colon tumors and normal mucosal biopsies; elevated taurine levels and reduced polyethyleneglycol absorption in tumors may have diagnostic significance. NMR in Biomedicine, 6(2), 111–118.

    Article  PubMed  CAS  Google Scholar 

  • Nicholson, J. K., Connelly, J., Lindon, J. C., & Holmes, E. (2002). Metabonomics: A platform for studying drug toxicity and gene function. Nature Reviews Drug Discovery, 1(2), 153–161.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, N. (2002). Intracellular glycosylation and development. Biochimica et Biophysica Acta, 1573(3), 336–345.

    PubMed  CAS  Google Scholar 

  • Pal, K., Sharma, U., Gupta, D. K., Pratap, A., & Jagannathan, N. R. (2005). Metabolite profile of cerebrospinal fluid in patients with spina bifida: A proton magnetic resonance spectroscopy study. Spine, 30(3), E68–E72.

    Article  PubMed  Google Scholar 

  • Patel, A. B., Srivastava, S., Phadke, R. S., & Govil, G. (1999). Identification of low-molecular-weight compounds in goat epididymis using multinuclear nuclear magnetic resonance. Analytical Biochemistry, 266(2), 205–215.

    Article  PubMed  CAS  Google Scholar 

  • Portais, J. C., Schuster, R., Merle, M., & Canioni, P. (1993). Metabolic flux determination in C6 glioma cells using carbon-13 distribution upon [1–13C]glucose incubation. European Journal of Biochemistry, 217(1), 457–468.

    Article  PubMed  CAS  Google Scholar 

  • Ross, B. D. (1991). Biochemical considerations in 1H spectroscopy. Glutamate and glutamine; myo-inositol and related metabolites. NMR Biomed, 4(2), 59–63.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, L. A., Dauchy, R. T., Nagel, W. O., & Morris, H. P. (1980). Mitochondrial malic enzymes. Mitochondrial NAD(P)+-dependent malic enzyme activity and malate-dependent pyruvate formation are progression-linked in Morris hepatomas. Journal of Biological Chemistry, 255(9), 3844–3848.

    PubMed  CAS  Google Scholar 

  • Schmidt, K., Nielsen, J., & Villadsen, J. (1999). Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. Journal of Biotechnology, 71(1–3), 175–189.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, U., Atri, S., Sharma, M. C., Sarkar, C., & Jagannathan, N. R. (2003). Biochemical characterization of muscle tissue of limb girdle muscular dystrophy: an 1H and 13C NMR study. NMR in Biomedicine, 16(4), 213–223.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, U., Mehta, A., Seenu, V., & Jagannathan, N. R. (2004). Biochemical characterization of metastatic lymph nodes of breast cancer patients by in vitro 1H magnetic resonance spectroscopy: A pilot study. Magnetic Resonance Imaging, 22(5), 697–706.

    Article  PubMed  CAS  Google Scholar 

  • Sterin, M., Cohen, J. S., Mardor, Y., Berman, E., & Ringel, I. (2001). Levels of phospholipid metabolites in breast cancer cells treated with antimitotic drugs: A 31P-magnetic resonance spectroscopy study. Cancer Research, 61(20), 7536–7543.

    PubMed  CAS  Google Scholar 

  • Szyperski, T. (1995). Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. European Journal of Biochemistry, 232(2), 433–448.

    Article  PubMed  CAS  Google Scholar 

  • Szyperski, T., Neri, D., Leiting, B., Otting, G., & Wuthrich, K. (1992). Support of 1H NMR assignments in proteins by biosynthetically directed fractional 13C-labeling. Journal of Biomolecular NMR, 2(4), 323–334.

    Article  PubMed  CAS  Google Scholar 

  • Timbrell, J. A., Seabra, V., & Waterfield, C. J. (1995). The in vivo and in vitro protective properties of taurine. General Pharmacology, 26(3), 453–462.

    PubMed  CAS  Google Scholar 

  • Troy, H. (2005). Metabolic profiling of hypoxia-inducible factor-1b-deficient and wide type Hepa-1 cells: Effects of hypoxia measured by 1H magnetic resonance spectroscopy. Metabolomics, 1(4), 293–303.

    Google Scholar 

  • van Winden, W., Verheijen, P., & Heijnen, S. (2001). Possible pitfalls of flux calculations based on 13C-labeling. Metabolic Engineering, 3(2), 151–162.

    Article  PubMed  Google Scholar 

  • Vercoutere, B., Durozard, D., Baverel, G., & Martin, G. (2004). Complexity of glutamine metabolism in kidney tubules from fed and fasted rats. Biochemistry Journal, 378(Pt 2), 485–495.

    Article  CAS  Google Scholar 

  • Wice, B. M., Trugnan, G., Pinto, M., Rousset, M., Chevalier, G., Dussaulx, E., Lacroix, B., & Zweibaum, A. (1985). The intracellular accumulation of UDP-N-acetylhexosamines is concomitant with the inability of human colon cancer cells to differentiate. Journal of Biological Chemistry, 260(1), 139–146.

    PubMed  CAS  Google Scholar 

  • Wiechert, W. (1997). Bidirectional reaction stpes in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnology and Bioengineering, 55, 101–117.

    Article  CAS  Google Scholar 

  • Wiechert, W., Mollney, M., Isermann, N., Wurzel, M., & de Graaf, A. A. (1999). Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. Biotechnology and Bioengineering, 66(2), 69–85.

    Article  PubMed  CAS  Google Scholar 

  • Wittmann, C., & Heinzle, E. (1999). Mass spectrometry for metabolic flux analysis. Biotechnology and Bioengineering, 62(6), 739–750.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants from the National Cancer Institute (P30 CA030199) and from the National Institutes of Health (U54 RR020843 (JWS), R01 AI059146 (AO), and R01 CA108959 (JWS)). Chen Yang was supported by a fellowship from the California Breast Cancer Research Program (12FB-0100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrei Osterman or Jeffrey W. Smith.

Additional information

Chen Yang and Adam D. Richardson contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (214 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Richardson, A.D., Osterman, A. et al. Profiling of central metabolism in human cancer cells by two-dimensional NMR, GC-MS analysis, and isotopomer modeling. Metabolomics 4, 13–29 (2008). https://doi.org/10.1007/s11306-007-0094-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-007-0094-y

Keywords

Navigation