Skip to main content

Advertisement

Log in

Isotopomer analysis of cellular metabolism in tissue culture: A comparative study between the pathway and network-based methods

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Understanding the metabolism of a cell requires knowledge about the intracellular biochemical structure as well as cellular responses to extracellular nutrients. Towards this goal, genomics and proteomics seek a complete description of the cell’s metabolic network, while the field of metabolomics aims to identify new metabolites and profile their distribution in such a network. Here we employed tracer-based metabolomics to characterize HepG2 metabolic responses to the nutritional environments of two DMEM media containing [1,2 13C2] glucose. A computational model describing 254 reactions of the HepG2 metabolic network was developed to systemically analyze the intracellular flux distribution based on tracer data. This is the largest and most comprehensive model used for isotopomer analysis to date. Estimated reaction fluxes from the model were benchmarked with those obtained from the traditional pathway-based method. Results from this study were as follows: (1) HepG2 cells grow equally well in two test media, including one where asparagine is substituted for the commonly used amino acid glutamine; (2) intracellular flux distributions, particularly in the TCA cycle, are markedly different between cells grown in the two cultures; and (3) compared to the pathway-based method, the network-based approach provides a more complete and detailed picture of substrate utilization as well as informs ways to improve the current media. In short, this network-based, systems biology-driven modeling approach to isotopomer analysis has proven to be a valuable tool for metabolic phenotyping and elucidating the nutrient–gene interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Arai M., Yokosuka O., Hirasawa Y., Fukai K., Chiba T., Imazeki F., Kanda T., Yatomi M., Takiguchi Y., Seki N., Saisho H., Ochiai T. (2006) Sequential gene expression changes in cancer cell lines after treatment with the demethylation agent 5-Aza-2′-deoxycytidine. Cancer 106:2514–2525

    Article  PubMed  CAS  Google Scholar 

  • Bederman I.R., Reszko A.E., Kasumov T., David F., Wasserman D.H., Kelleher J.K., Brunengraber H. (2004) Zonation of labeling of lipogenic acetyl-CoA across the liver: implications for studies of lipogenesis by mass isotopomer analysis. J. Biol. Chem. 279:43207–43216

    Article  PubMed  CAS  Google Scholar 

  • Bettger W.J., Ham R.G. (1982) The nutrient requirements of cultured mammalian cells. Adv Nutr Res 4:249–286

    PubMed  CAS  Google Scholar 

  • Birkemeyer C., Luedemann A., Wagner C., Erban A., Kopka J. (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 23:28–33

    Article  PubMed  CAS  Google Scholar 

  • Brunengraber H., Kelleher J.K., Des Rosiers C. (1997) Applications of mass isotopomer analysis to nutrition research. Annu Rev Nutr 17:559–596

    Article  PubMed  CAS  Google Scholar 

  • Christensen B., Gombert A.K., Nielsen J. (2002) Analysis of flux estimates based on (13) C-labelling experiments. Eur J Biochem 269:2795–2800

    Article  PubMed  CAS  Google Scholar 

  • Cline G.W., Lepine R.L., Papas K.K., Kibbey R.G., Shulman G.I. (2004) 13C NMR isotopomer analysis of anaplerotic pathways in INS-1 cells. J. Biol. Chem. 279:44370–44375

    Article  PubMed  CAS  Google Scholar 

  • Cohen D.M., Bergman R.N. (1997) Improved estimation of anaplerosis in heart using 13C NMR. Am. J. Physiol. 273:E1228–42

    PubMed  CAS  Google Scholar 

  • Dehn P.F., White C.M., Conners D.E., Shipkey G., Cumbo T.A. (2004) Characterization of the human hepatocellular carcinoma (hepg2) cell line as an in vitro model for cadmium toxicity studies. In Vitro Cell Dev. Biol. Anim. 40:172–82

    Article  PubMed  CAS  Google Scholar 

  • Du Q.Y., Wang X.B., Chen X.J., Zheng W., Wang S.Q. (2003) Antitumor mechanism of antisense cantide targeting human telomerase reverse transcriptase. World J. Gastroenterol. 9:2030–5

    PubMed  CAS  Google Scholar 

  • Duerden J.M., Gibbons G.F. (1988) Secretion and storage of newly synthesized hepatic triacylglycerol fatty acids in vivo in different nutritional states and in diabetes. Biochem J 255:929–35

    PubMed  CAS  Google Scholar 

  • Fukuda H., Ebara M., Okuyama M., Sugiura N., Yoshikawa M., Saisho H., Shimizu R., Motoji N., Shigematsu A., Watayo T. (2002) Increased metabolizing activities of the tricarboxylic acid cycle and decreased drug metabolism in hepatocellular carcinoma. Carcinogenesis 23:2019–23

    Article  PubMed  CAS  Google Scholar 

  • Gombert A.K., Moreira dos Santos M., Christensen B., Nielsen J. (2001) Network identification and flux quantification in the central metabolism of Saccharomyces cerevisiae under different conditions of glucose repression. J. Bacteriol. 183:1441–51

    Article  PubMed  CAS  Google Scholar 

  • Hellerstein M.K., Christiansen M., Kaempfer S., Kletke C., Wu K., Reid J.S., Mulligan K., Hellerstein N.S., Shackleton C.H. (1991) Measurement of de novo hepatic lipogenesis in humans using stable isotopes. J. Clin. Invest. 87:1841–52

    Article  PubMed  CAS  Google Scholar 

  • Ibarra R.U., Edwards J.S., Palsson B.O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420:186–9

    Article  PubMed  CAS  Google Scholar 

  • Ibarra R.U., Fu P., Palsson B.O., DiTonno J.R., Edwards J.S. (2003) Quantitative analysis of Escherichia coli metabolic phenotypes within the context of phenotypic phase planes. J. Mol. Microbiol. Biotechnol. 6:101–8

    Article  PubMed  CAS  Google Scholar 

  • Katz J., Tayek J.A. (1999) Recycling of glucose and determination of the Cori Cycle and gluconeogenesis. Am. J. Physiol. 277:E401–7

    PubMed  CAS  Google Scholar 

  • Kelleher J.K. (1986) Gluconeogenesis from labeled carbon: estimating isotope dilution. Am J Physiol 250:E296–305

    PubMed  CAS  Google Scholar 

  • Khairallah M., Labarthe F., Bouchard B., Danialou G., Petrof B.J., Des Rosiers C. (2004) Profiling substrate fluxes in the isolated working mouse heart using 13C-labeled substrates: focusing on the origin and fate of pyruvate and citrate carbons. Am J Physiol Heart Circ Physiol 286:H1461–70

    Article  PubMed  CAS  Google Scholar 

  • Kilberg M.S., Handlogten M.E., Christensen H.N. (1980) Characteristics of an amino acid transport system in rat liver for glutamine, asparagine, histidine, and closely related analogs. J. Biol. Chem. 255:4011–9

    PubMed  CAS  Google Scholar 

  • Klapa M.I., Aon J.C., Stephanopoulos G. (2003) Systematic quantification of complex metabolic flux networks using stable isotopes and mass spectrometry. Eur. J. Biochem. 270:3525–3542

    Article  PubMed  CAS  Google Scholar 

  • Lanks K.W., Li P.W. (1988) End products of glucose and glutamine metabolism by cultured cell lines. J. Cell Physiol. 135:151–5

    Article  PubMed  CAS  Google Scholar 

  • Lee W.N., Bassilian S., Ajie H.O., Schoeller D.A., Edmond J., Bergner E.A., Byerley L.O. (1994a) In vivo measurement of fatty acids and cholesterol synthesis using D2O and mass isotopomer analysis. Am. J. Physiol. 266:E699–708

    CAS  Google Scholar 

  • Lee W.N., Bassilian S., Guo Z., Schoeller D., Edmond J., Bergner E.A., Byerley L.O. (1994b) Measurement of fractional lipid synthesis using deuterated water (2H2O) and mass isotopomer analysis. Am. J. Physiol. 266:E372–83

    CAS  Google Scholar 

  • Lee W.N., Bergner E.A., Guo Z.K. (1992) Mass isotopomer pattern and precursor-product relationship. Biol. Mass Spectrom. 21:114–22

    Article  PubMed  CAS  Google Scholar 

  • Lee W.N., Boros L.G., Puigjaner J., Bassilian S., Lim S., Cascante M. (1998a) Mass isotopomer study of the nonoxidative pathways of the pentose cycle with [1,2-13C2] glucose. Am. J. Physiol. 274:E843–51

    CAS  Google Scholar 

  • Lee W.N., Byerley L.O., Bassilian S., Ajie H.O., Clark I., Edmond J., Bergner E.A. (1995) Isotopomer study of lipogenesis in human hepatoma cells in culture: contribution of carbon and hydrogen atoms from glucose. Anal. Biochem. 226:100–12

    Article  PubMed  CAS  Google Scholar 

  • Lee W.N., Byerley L.O., Bergner E.A., Edmond J. (1991a) Mass isotopomer analysis: theoretical and practical considerations. Biol. Mass Spectrom. 20:451–8

    Article  CAS  Google Scholar 

  • Lee W.N., Edmond J., Bassilian S., Morrow J.W. (1996) Mass isotopomer study of glutamine oxidation and synthesis in primary culture of astrocytes. Dev. Neurosci. 18:469–77

    PubMed  CAS  Google Scholar 

  • Lee W.N., Go V.L. (2005) Nutrient-gene interaction: tracer-based metabolomics. J. Nutr. 135:3027–3032

    PubMed  CAS  Google Scholar 

  • Lee W.N., Lim S., Bassilian S., Bergner E.A., Edmond J. (1998b) Fatty acid cycling in human hepatoma cells and the effects of troglitazone. J. Biol. Chem. 273:20929–34

    Article  CAS  Google Scholar 

  • Lee W.N.P. (2006) Characterizing phenotype with tracer based metabolomics. Metabolomics 1:31–39

    Article  CAS  Google Scholar 

  • Lee W.N.P., Byerley L.O., Bergner E.A., Edmond J. (1991b) Mass isotopomer analysis - theoretical and practical considerations. Biol. Mass Spectrom. 20:451–458

    Article  CAS  Google Scholar 

  • Lowenstein J.M., Brunengraber H., Wadke M. (1975) Measurement of rates of lipogenesis with deuterated and tritiated water. Methods Enzymol. 35:279–87

    PubMed  CAS  Google Scholar 

  • Mailliard M.E., Kilberg M.S. (1990) Sodium-dependent neutral amino acid transport by human liver plasma membrane vesicles. J. Biol. Chem. 265:14321–6

    PubMed  CAS  Google Scholar 

  • Malloy C.R., Jones J.G., Jeffrey F.M., Jessen M.E., Sherry A.D. (1996) Contribution of various substrates to total citric acid cycle flux and anaplerosis as determined by 13C isotopomer analysis and O2 consumption in the heart. Magma 4:35–46

    Article  PubMed  CAS  Google Scholar 

  • Marin S., Lee W.N., Bassilian S., Lim S., Boros L.G., Centelles J.J., FernAndez-Novell J.M., Guinovart J.J., Cascante M. (2004) Dynamic profiling of the glucose metabolic network in fasted rat hepatocytes using [1,2-13C2] glucose. Biochem. J. 381:287–94

    Article  PubMed  CAS  Google Scholar 

  • Muller M., Kersten S. (2003) Nutrigenomics: goals and strategies. Nat. Rev. Genet. 4:315–22

    Article  PubMed  CAS  Google Scholar 

  • Omer R.E., Verhoef L., Van’t Veer P., Idris M.O., Kadaru A.M., Kampman E., Bunschoten A., Kok F.J. (2001) Peanut butter intake, GSTM1 genotype and hepatocellular carcinoma: a case-control study in Sudan. Cancer Causes Control 12:23–32

    Article  PubMed  CAS  Google Scholar 

  • Owen O.E., Kalhan S.C., Hanson R.W. (2002) The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277:30409–12

    Article  PubMed  CAS  Google Scholar 

  • Pawlik T.M., Souba W.W., Bode B.P. (2001) Asparagine uptake in rat hepatocytes: resolution of a paradox and insights into substrate-dependent transporter regulation. Amino Acids 20:335–52

    Article  PubMed  CAS  Google Scholar 

  • Price N.D., Reed J.L., Palsson B.O. (2004) Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat. Rev. Microbiol. 2:886–97

    Article  PubMed  CAS  Google Scholar 

  • Radziuk J., Lee W.P. (1999) Measurement of gluconeogenesis and mass isotopomer analysis based on [U-(13)C] glucose. Am. J. Physiol. 277:E199–207

    PubMed  CAS  Google Scholar 

  • Reed J.L., Famili I., Thiele I., Palsson B.O. (2006) Towards multidimensional genome annotation. Nat. Rev. Genet. 7:130–41

    Article  PubMed  CAS  Google Scholar 

  • Sanford K., Soucaille P., Whited G., Chotani G. (2002) Genomics to fluxomics and physiomics - pathway engineering. Curr. Opin. Microbiol. 5:318–22

    Article  PubMed  CAS  Google Scholar 

  • Schilling C.H., Letscher D., Palsson B.O. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol. 203:229–48

    Article  PubMed  CAS  Google Scholar 

  • Schmidt K., Carlsen M., Nielsen J., Villadsen J. (1997) Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices. Biotechnol. Bioeng. 55:831–840

    Article  CAS  PubMed  Google Scholar 

  • Schmidt K., Nielsen J., Villadsen J. (1999) Quantitative analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete isotopomer models. J. Biotechnol. 71:175–89

    Article  PubMed  CAS  Google Scholar 

  • Tserng K.Y., Gilfillan C.A., Kalhan S.C. (1984) Determination of carbon-13 labeled lactate in blood by gas chromatography/mass spectrometry. Anal. Chem. 56:517–23

    Article  PubMed  CAS  Google Scholar 

  • Van Dien S.J., Strovas T., Lidstrom M.E. (2003) Quantification of central metabolic fluxes in the facultative methylotroph methylobacterium extorquens AM1 using 13C-label tracing and mass spectrometry. Biotechnol. Bioeng. 84:45–55

    Article  PubMed  CAS  Google Scholar 

  • van Winden W.A., Heijnen J.J., Verheijen P.J.T., Grievink J. (2001) A priori analysis of metabolic flux identifiability from C-13-labeling data. Biotechnol. Bioeng. 74:505–516

    Article  PubMed  Google Scholar 

  • Vo, T.D. and Palsson, B.O. (2006) Isotopomer analysis of myocardial substrate metabolism: A systems biology approach. Biotechnol Bioeng. in press

  • Wiechert W., de Graaf A.A. (1997) Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. Biotechnol. Bioeng. 55:101–117

    Article  CAS  PubMed  Google Scholar 

  • Winkler B.S., Sauer M.W., Starnes C.A. (2004) Effects of L-glutamate/D-aspartate and monensin on lactic acid production in retina and cultured retinal Muller cells. J. Neurochem. 89:514–25

    Article  PubMed  CAS  Google Scholar 

  • Wu M., Chen S., Wu X. (2006) Differences in cytochrome P450 2C19 (CYP2C19) expression in adjacent normal and tumor tissues in chinese cancer patients. Med. Sci. Monit. 12:BR174–178

    PubMed  CAS  Google Scholar 

  • Zielke H.R., Zielke C.L., Ozand P.T. (1984) Glutamine: a major energy source for cultured mammalian cells. Fed. Proc. 43:121–5

    PubMed  CAS  Google Scholar 

  • Zupke C., Stephanopoulos G. (1994) Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices. Biotechnol. Prog. 10:489–498

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Jennifer Reed and Scott Becker for helpful suggestions in the preparation of this manuscript. This research was partially supported by University of California Systemwide Biotechnology Research & Education Program GREAT Training Grant 2005–246 to T. D. V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard O. Palsson.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo, T.D., Lim, S.K., Lee, W.N.P. et al. Isotopomer analysis of cellular metabolism in tissue culture: A comparative study between the pathway and network-based methods. Metabolomics 2, 243–256 (2006). https://doi.org/10.1007/s11306-006-0033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0033-3

Keywords

Navigation