Skip to main content
Log in

Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics

  • Published:
Metabolomics Aims and scope Submit manuscript

A strategy for robust and reliable mechanistic statistical modelling of metabolic responses in relation to drug induced toxicity is presented. The suggested approach addresses two cases commonly occurring within metabonomic toxicology studies, namely; 1) A pre-defined hypothesis about the biological mechanism exists and 2) No such hypothesis exists. GC/MS data from a liver toxicity study consisting of rat urine from control rats and rats exposed to a proprietary AstraZeneca compound were resolved by means of hierarchical multivariate curve resolution (H-MCR) generating 287 resolved chromatographic profiles with corresponding mass spectra. Filtering according to significance in relation to drug exposure rendered in 210 compound profiles, which were subjected to further statistical analysis following correction to account for the control variation over time. These dose related metabolite traces were then used as new observations in the subsequent analyses. For case 1, a multivariate approach, named Target Batch Analysis, based on OPLS regression was applied to correlate all metabolite traces to one or more key metabolites involved in the pre-defined hypothesis. For case 2, principal component analysis (PCA) was combined with hierarchical cluster analysis (HCA) to create a robust and interpretable framework for unbiased mechanistic screening. Both the Target Batch Analysis and the unbiased approach were cross-verified using the other method to ensure that the results did match in terms of detected metabolite traces. This was also the case, implying that this is a working concept for clustering of metabolites in relation to their toxicity induced dynamic profiles regardless if there is a pre-existing hypothesis or not. For each of the methods the detected metabolites were subjected to identification by means of data base comparison as well as verification in the raw data. The proposed strategy should be seen as a general approach for facilitating mechanistic modelling and interpretations in metabolomic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Similar content being viewed by others

References

  • Antti H., Bollard M.E., Ebbels T., Keun H., Lindon J.C., Nicholson J.K., Holmes E., (2002) Batch statistical processing of H-1 NMR-derived urinary spectral data J. Chemometr. 16: 461–468

    Article  CAS  Google Scholar 

  • Antti, H., Ebbels, T.M.D., Keun, H.C., Bollard, M.E., Beckonert, O., Lindon, J.C., Nicholson, J.K. and Holmes, E. (2006). ‘Metabotracing’ – A multivariate statistical modelling approach to time-resolved metabolic profiling of experimental disease states (submitted)

  • Box, G.E.P., Hunter, W.G. and Hunter, S.J. (1978). Statistics for experimenters

  • Brindle J.T., Antti H., Holmes E., Tranter G., Nicholson J.K., Bethell H.W.L., Clarke S., Schofield P.M., Mckilligin E., Mosedale D.E., Grainger D.J., (2002) Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using H-1-NMR-based metabonomics Nat. Med. 8: 1439–1444

    Article  PubMed  CAS  Google Scholar 

  • Clayton T.A., Lindon J.C., Cloarec O., Antti H., Charuel C., Hanton G., Provost J.P., Le Net J.L., Baker D., Walley R.J., Everett J.R., Nicholson J.K., (2006) Pharmaco-metabonomic phenotyping and personalized drug treatment Nature 440: 1073–1077

    Article  PubMed  CAS  Google Scholar 

  • Cloarec O., Dumas M.E., Trygg J., Craig A., Barton R.H., Lindon J.C., Nicholson J.K., Holmes E., (2005) Evaluation of the orthogonal projection on latent structure model limitations caused by chemical shift variability and improved visualization of biomarker changes in H-1 NMR spectroscopic metabonomic studies Anal. Chem. 77: 517–526

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O., (2002) Metabolomics – the link between genotypes and phenotypes Plant Mol. Biol. 48: 155–171

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O., Kopka J., Dormann P., Altmann T., Trethewey R.N., Willmitzer L., (2000) Metabolite profiling for plant functional genomics Nat. Biotechnol. 18: 1157–1161

    Article  PubMed  CAS  Google Scholar 

  • Glinski M., Weckwerth W., (2006) The role of mass spectrometry in plant systems biology Mass Spectrometry Rev. 25: 173–214

    Article  CAS  Google Scholar 

  • Holmes E., Antti H., (2002) Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting complex biological NMR spectra Analyst 127: 1549–1557

    Article  PubMed  CAS  Google Scholar 

  • Thysell, E.S., Pohjanen, E., Lindberg, J., Schuppe-Koistinen, I., Sjöstrom, M., Trygg, J., Moritz, T., Jonsson, P. and Antti, H. (2006). Reliable compound detection in comparative metabolomics (submitted)

  • Johnson, D.E. (1998). Applied multivariate methods for data analysts

  • Jonsson P., Johansson A.I., Gullberg J., Trygg J.AJ., Grung B., Marklund S., Sjöstrom M., Antti H., Moritz T., (2005) High-throughput data analysis for detecting and identifying differences between samples in GC/MS-based metabolomic analyses Anal. Chem. 77: 5635–5642

    Article  PubMed  CAS  Google Scholar 

  • Jonsson P., Johansson E.S., Wuolikainen A., Lindberg J., Schuppe-Koistinen I., Kusano M., Sjöstrom M., Trygg J., Moritz T., Antti H., (2006a) Predictive metabolite profiling applying hierarchical multivariate curve resolution to GC-MS datas – a potential tool for multi-parametric diagnosis J. Proteome Res. 5: 1407–1414

    Article  CAS  Google Scholar 

  • Jonsson, P., Stenlund, H., Moritz, T., Trygg, J., Sjöstrom, M., Verheij, E.R., Lindberg, J., Schuppe-Koistinen, I. and Antti, H. (2006b). A strategy for modelling dynamic responses in metabolic samples characterized by GC/MS. Metabolomics 2, 135–143

  • Keun H.C., Ebbels T.M.D., Antti H., Bollard M.E., Beckonert O., Schlotterbeck G., Senn H., Niederhauser U., Holmes E., Lindon J.C., Nicholson J.K., (2002) Analytical reproducibility in H-1 NMR-based metabonomic urinalysis Chem. Res. Toxicol. 15: 1380–1386

    Article  PubMed  CAS  Google Scholar 

  • Lindon J.C., Nicholson J.K., Holmes E., Antti H., Bollard M.E., Keun H., Beckonert O., Ebbels T.M., Reilly M.D., Robertson D., Stevens G.J., Luke P., Breau A.P., Cantor G.H., Bible R.H., Niederhauser U., Senn H., Schlotterbeck G., Sidelmann U.G., Laursen S.M., Tymiak A., Car B.D., Lehman-Mckeeman L., Colet J.M., Loukaci A., Thomas C., (2003) Contemporary issues in toxicology – the role of metabonomics in toxicology and its evaluation by the COMET project Toxicol. Appl. Pharmacol. 187: 137–146

    Article  PubMed  CAS  Google Scholar 

  • Lundstedt T., Seifert E., Abramo L., Thelin B., Nyström A., Pettersen J., Bergman R., (1998) Experimental design and optimization Chemometr. Intell. Lab. Syst. 42: 3–40

    Article  CAS  Google Scholar 

  • Morel N.M., Holland J.M., Van Der Greef J., Marple E.W., Clish C., loscalzo J., Naylor S., (2004) Primer on medical genomics part XIV: introduction to systems biology – a new approach to understanding disease and treatment Mayo Clinic Proc. 79: 651–658

    Article  CAS  Google Scholar 

  • NIST (2005). NIST MS search user guide, Gaithersburg, MD http://chemdata.nist.gov/massspc/Srch_v1.7/Ver20Man.pdf

  • Odunsi K., Wollman R.M., Ambrosone C.B., Hutson A., Mccann S.E., Tammela J., Geisler J.P., Miller G., Sellers T., Cliby W., Qian F., Keitz B., Intengan M., Lele S., Alderfer J.L., (2005) Detection of epithelial ovarian cancer using H-1-NMR-based metabonomics Int. J. Cancer 113: 782–788

    Article  PubMed  CAS  Google Scholar 

  • Plumb R.S., Granger J.H., Stumpf C.L., Johnson K.A., Smith B.W., Gaulitz S., Wilson I.D., Castro-Perez J., (2005) A rapid screening approach to metabonomics using UPLC and oa-TOF mass spectrometry: application to age, gender and diurnal variation in normal/Zucker obese rats and black, white and nude mice Analyst 130: 844–849

    Article  PubMed  CAS  Google Scholar 

  • Robertson D.G., (2005) Metabonomics in toxicology: a review Toxicol. Sci. 85: 809–822

    Article  PubMed  CAS  Google Scholar 

  • Schauer N., Steinhauser D., Strelkov S., Schomburg D., Allison G., Moritz T., Lundgren K., Roessner-Tunali U., Forbes M.G., Willmitzer L., Fernie A.R., Kopka J., (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples FEBS Lett. 579: 1332–1337

    Article  PubMed  CAS  Google Scholar 

  • Stone M., (1974) Cross-validatory choice and assessement of statistical prediction J. Roy. Stat. Soc. 36B: 111–133

    Google Scholar 

  • Trygg J., Wold S., (2002) Orthogonal projections to latent structures (O-PLS) J. Chemometr. 16: 119–128

    Article  CAS  Google Scholar 

  • Underwood B.R., Broadhurst D., Dunn W.B., Ellis D.I., Michell A.W., Vacher C., Mosedale D.E., Kell D.B., Barker R.A., Grainger D.J., Rubinsztein D.C., (2006) Huntington disease patients and transgenic mice have similar pro-catabolic serum metabolite profiles Brain 129: 877–886

    Article  PubMed  Google Scholar 

  • Van Der Greef J., Stroobant P., Van Der Heijden R., (2004) The role of analytical sciences medical systems biology Curr. Opin. Chem. Biol. 8: 559–565

    Article  PubMed  CAS  Google Scholar 

  • Wikström C., Albano C., Eriksson L., Friden H., Johansson E., Nordahl A., Rännar S., Sandberg M., Kettaneh-Wold N., Wold S., (1998) Multivariate process and quality monitoring applied to an electrolysis process Part II. Multivariate time-series analysis of lagged latent variables Chemometr. Intell. Lab. Syst. 42: 233–240

    Article  Google Scholar 

  • Wold S., Esbensen K., Geladi P., (1987) Principal component analysis Chemometr. Intell. Lab. Syst. 2: 37–52

    Article  CAS  Google Scholar 

  • Wold S., Sjöstrom M., Eriksson L., (2001a) PLS-regression: a basic tool of chemometrics Chemometr. Intell. Lab. Syst. 58: 109–130

    Article  CAS  Google Scholar 

  • Wold S., Trygg J., Berglund A., Antti H., (2001b) Some recent developments in PLS modeling Chemometr. Intell. Lab. Syst. 58: 131–150

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the EU-strategic funding, Strategic Research Foundation (SSF), the Swedish Association of Persons with Neurologically Disabilities (NHR), the Swedish Research Council, Wallenberg Consortium North (WCN), and the Kempe Foundation. Elwin R. Verheij, Leo van Stee and Bas Muiljwijk, TNO Pharma are gratefully acknowledged for provision of the GC/MS. Hans Stenlund, Umeå University, is gratefully acknowledged for provision of the Matlab script for raw data interpretation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrik Antti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pohjanen, E., Thysell, E., Lindberg, J. et al. Statistical multivariate metabolite profiling for aiding biomarker pattern detection and mechanistic interpretations in GC/MS based metabolomics. Metabolomics 2, 257–268 (2006). https://doi.org/10.1007/s11306-006-0032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0032-4

Keywords

Navigation