Skip to main content

Advertisement

Log in

Pannexin 3 channels in health and disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Pannexin 3 (PANX3) is a member of the pannexin family of single membrane channel-forming glycoproteins. Originally thought to have a limited localization in cartilage, bone, and skin, PANX3 has now been detected in a variety of other tissues including skeletal muscle, mammary glands, the male reproductive tract, the cochlea, blood vessels, small intestines, teeth, and the vomeronasal organ. In many cell types of the musculoskeletal system, such as osteoblasts, chondrocytes, and odontoblasts, PANX3 has been shown to regulate the balance of proliferation and differentiation. PANX3 can be induced during progenitor cell differentiation, functioning at the cell surface as a conduit for ATP and/or in the endoplasmic reticulum as a calcium leak channel. Evidence in osteoblasts and monocytes also highlight a role for PANX3 in purinergic signalling through its function as an ATP release channel. PANX3 is critical in the development and ageing of bone and cartilage, with its levels temporally regulated in other tissues such as skeletal muscle, skin, and the cochlea. In diseases such as osteoarthritis and intervertebral disc degeneration, PANX3 can have either protective or detrimental roles depending on if the disease is age-related or injury-induced. This review will discuss PANX3 function in tissue growth and regeneration, its role in cellular differentiation, and how it becomes dysregulated in disease conditions such as obesity, Duchenne’s muscular dystrophy, osteosarcoma, and non-melanoma skin cancer, where most of the findings on PANX3 function can be attributed to the characterization of Panx3 KO mouse models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Raw data available upon request.

References

  1. Panchin Y, Kelmanson I, Matz M, Lukyanov K, Usman N, Lukyanov S (2000) A ubiquitous family of putative gap junction molecules. Curr Biol 10(13):473–474

    Article  Google Scholar 

  2. Ishikawa M, Iwamoto T, Nakamura T, Doyle A, Fukumoto S, Yamada Y (2011) Pannexin 3 functions as an ER Ca 2+ channel, hemichannel, and gap junction to promote osteoblast differentiation. J Cell Biol 193(7):1257–1274

    Article  CAS  Google Scholar 

  3. Iwamoto T, Nakamura T, Doyle A, Ishikawa M, De Vega S, Fukumoto S, Yamada Y (2010) Pannexin 3 regulates intracellular ATP/cAMP levels and promotes chondrocyte differentiation. J Biol Chem 285:18948–18958

    Article  CAS  Google Scholar 

  4. Pillon N, Li Y, Fink L, Brozinick J, Nikolayev J, Kuo M, Bilan P, Klip A (2014) Nucleotides released from palmitate-challenged muscle cells through pannexin-3 attract monocytes. Diabetes 63:3815–3826

    Article  CAS  Google Scholar 

  5. Bruzzone R, Hormuzdi SG, Barbe MT, Herb A, Monyer H (2003) Pannexins, a family of gap junction proteins expressed in brain. Proc Natl Acad Sci U S A 100(23):13644–13649

    Article  CAS  Google Scholar 

  6. Baranova A, Ivanov D, Petrash N, Pestova A, Skoblov M, Kelmanson I, Shagin D, Nazarenko S, Geraymovych E, Litvin O, Tiunova A, Born TL, Usman N, Staroverov D, Lukyanov S, Panchin Y (2004) The mammalian pannexin family is homologous to the invertebrate innexin gap junction proteins. Genomics 83(4):706–716

    Article  CAS  Google Scholar 

  7. Yen MR, Saier Jr, Milton H (2007) Gap junctional proteins of animals: the innexin/pannexin superfamily. Prog Biophys Mol Biol 94:5-14

  8. Penuela S, Bhalla R, Nag K, Laird D (2009) Glycosylation regulates pannexin intermixing and cellular localization. Mol Biol Cell 20:4313–4323

    Article  CAS  Google Scholar 

  9. Penuela S, Bhalla R, Gong X-Q, Cowan KN, Celetti SJ, Cowan BJ, Bai D, Shao Q, Laird DW (2007) Pannexin 1 and pannexin 3 are glycoproteins that exhibit many distinct characteristics from the connexin family of gap junction proteins. J Cell Sci 120(21):3772–3783

    Article  CAS  Google Scholar 

  10. Boyce AKJ, Epp AL, Nagarajan A (1860) Swayne LA (2018) Transcriptional and post-translational regulation of pannexins. Biochim Biophys Acta Biomembr 1:72–82. https://doi.org/10.1016/j.bbamem.2017.03.004

    Article  CAS  Google Scholar 

  11. Penuela S, Gehi R (1828) Laird DW (2013) The biochemistry and function of pannexin channels. Biochim Biophys Acta 1:15–22. https://doi.org/10.1016/j.bbamem.2012.01.017

    Article  CAS  Google Scholar 

  12. Penuela S, Laird DW (2012) The cellular life of pannexins. WIREs Membr Transp Signal 1:621–632

    Article  CAS  Google Scholar 

  13. Fu D, Song F, Sun H, Pei D, Wang Y, Lei J, Huang C (2015) Expression of pannexin3 in human odontoblast-like cells and its hemichannel function in mediating ATP release. Arch Oral Biol 60(10):1510–1516. https://doi.org/10.1016/j.archoralbio.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  14. Ishikawa M, Iwamoto T, Fukumoto S, Yamada Y (2014) Pannexin 3 inhibits proliferation of osteoprogenitor cells by regulating Wnt and p21 signaling. J Biol Chem 289(5):2839–2851

    Article  CAS  Google Scholar 

  15. Langlois S, Xiang X, Young K, Cowan BJ, Penuela S, Cowan KN (2014) Pannexin 1 and pannexin 3 channels regulate skeletal muscle myoblast proliferation and differentiation. J Biol Chem 289(44):30717–30731

    Article  CAS  Google Scholar 

  16. Moon PM, Penuela S, Barr K, Khan S, Pin CL, Welch I, Attur M, Abramson SB, Laird DW, Beier F (2015) Deletion of Panx3 prevents the development of surgically induced osteoarthritis. J Mol Med 93(8):845–856

    Article  CAS  Google Scholar 

  17. Oh SK, Shin JO, Baek JI, Lee J, Bae JW, Ankamerddy H, Kim MJ, Huh TL, Ryoo ZY, Kim UK, Bok J, Lee KY (2015) Pannexin 3 is required for normal progression of skeletal development in vertebrates. FASEB J 29(11):4473–4484

    Article  CAS  Google Scholar 

  18. Serjeant M, Moon PM, Quinonez D, Penuela S, Beier F, Séguin CA (2021) The role of Panx3 in age-associated and injury-induced intervertebral disc degeneration. International Journal of Molecular Sciences 22(3):1080. https://doi.org/10.3390/ijms22031080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Veras MA, McCann MR, Tenn NA, Seguin CA (2020) Transcriptional profiling of the murine intervertebral disc and age-associated changes in the nucleus pulposus. Connect Tissue Res 61(1):63–81. https://doi.org/10.1080/03008207.2019.1665034

    Article  CAS  PubMed  Google Scholar 

  20. Bond SR, Lau A, Penuela S, Sampaio AV, Underhill TM, Laird DW, Naus CC (2011) Pannexin 3 is a novel target for Runx2, expressed by osteoblasts and mature growth plate chondrocytes. J Bone Miner Res 26(12):2911–2922

    Article  CAS  Google Scholar 

  21. Turmel P, Dufresne J, Hermo L, Smith CE, Penuela S, Laird DW, Cyr DG (2011) Characterization of pannexin1 and pannexin3 and their regulation by androgens in the male reproductive tract of the adult rat. Mol Reprod Dev 78(2):124–138

    Article  CAS  Google Scholar 

  22. Lohman AW, Billaud M, C SA, Johnstone SR, Best A, Lee M, Barr K, Penuela S, Laird DW, Isakson BE, (2012) Expression of pannexin isoforms in the systemic murine arterial network. J Vasc Res 49:405–416

    Article  CAS  Google Scholar 

  23. Whyte-Fagundes P, Kurtenbach S, Zoidl C, Shestopalov VI, Carlen PL, Zoidl G (2018) A potential compensatory role of Panx3 in the VNO of a Panx1 knock out mouse model. Front Mol Neurosci 11:135. https://doi.org/10.3389/fnmol.2018.00135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abitbol J, Kelly J, Barr K, Schormans A, Laird D, Allman B (2016) Differential effects of pannexins on noise-induced hearing loss. Biochem J 473:4665–4680

    Article  CAS  Google Scholar 

  25. Wang XH, Streeter M, Liu YP, Zhao HB (2009) Identification and characterization of pannexin expression in the mammalian cochlea. J Comp Neurol 512(3):336–346. https://doi.org/10.1002/cne.21898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ishikawa M, Williams GL, Ikeuchi T, Sakai K, Fukumoto S, Yamada Y (2016) Pannexin 3 and connexin 43 modulate skeletal development through their distinct functions and expression patterns. J Cell Sci 129(5):1018–1030. https://doi.org/10.1242/jcs.176883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yorgan TA, Peters S, Amling M, Schinke T (2019) Osteoblast-specific expression of Panx3 is dispensable for postnatal bone remodeling. Bone 127:155–163. https://doi.org/10.1016/j.bone.2019.06.008

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa M, Williams G, Forcinito P, Ishikawa M, Petrie RJ, Saito K, Fukumoto S, Yamada Y (2019) Pannexin 3 ER Ca(2+) channel gating is regulated by phosphorylation at the Serine 68 residue in osteoblast differentiation. Sci Rep 9(1):18759. https://doi.org/10.1038/s41598-019-55371-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Song F, Sun H, Wang Y, Yang H, Huang L, Fu D, Gan J, Huang C (2017) Pannexin3 inhibits TNF-alpha-induced inflammatory response by suppressing NF-kappaB signalling pathway in human dental pulp cells. J Cell Mol Med 21(3):444–455. https://doi.org/10.1111/jcmm.12988

    Article  CAS  PubMed  Google Scholar 

  30. Iwamoto T, Nakamura T, Ishikawa M, Yoshizaki K, Sugimoto A, Ida-Yonemochi H, Ohshima H, Saito M, Yamada Y, Fukumoto S (2017) Pannexin 3 regulates proliferation and differentiation of odontoblasts via its hemichannel activities. PLoS One 12(5):e0177557. https://doi.org/10.1371/journal.pone.0177557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishikawa M, Yamada Y (2017) The role of pannexin 3 in bone biology. J Dent Res 96(4):372–379. https://doi.org/10.1177/0022034516678203

    Article  CAS  PubMed  Google Scholar 

  32. Celetti SJ, Cowan KN, Penuela S, Shao Q, Churko J, Laird DW (2010) Implications of pannexin 1 and pannexin 3 for keratinocyte differentiation. J Cell Sci 123(8):1363–1372

    Article  CAS  Google Scholar 

  33. Cowan KN, Langlois S, Penuela S, Cowan BJ, Laird DW (2012) Pannexin1 and pannexin3 exhibit distinct localization patterns in human skin appendages and are regulated during keratinocyte differentiation and carcinogenesis. Cell Commun Adhes 19(3–4):45–53

    Article  CAS  Google Scholar 

  34. Flores-Muñoz C, Maripillán J, Vásquez-Navarrete J, Novoa-Molina J, Ceriani R, Sánchez HA, Abbott AC, Weinstein-Oppenheimer C, Brown DI, Cárdenas AM, García IE, Martínez AD (2021) Restraint of human skin fibroblast motility, migration, and cell surface actin dynamics, by pannexin 1 and P2X7 receptor signaling. International Journal of Molecular Sciences 22(3):1069. https://doi.org/10.3390/ijms22031069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pham TL, St-Pierre ME, Ravel-Chapuis A, Parks TEC, Langlois S, Penuela S, Jasmin BJ, Cowan KN (2018) Expression of Pannexin 1 and Pannexin 3 during skeletal muscle development, regeneration, and Duchenne muscular dystrophy. J Cell Physiol 233(10):7057–7070. https://doi.org/10.1002/jcp.26629

    Article  CAS  PubMed  Google Scholar 

  36. Abitbol J, O’Donnell B, CB W, Jewlal E, Kelly J, Barr K, Willmore K, Allman B, Penuela S, (2019) Double deletion of Panx1 and Panx3 affects skin and bone but not hearing. J Mol Med 97(5):723–726. https://doi.org/10.1007/s00109-019-01779-9

    Article  CAS  PubMed  Google Scholar 

  37. Zhang P, Ishikawa M, Rhodes C, Doyle A, Ikeuchi T, Nakamura K, Chiba Y, He B, Yamada Y (2019) Pannexin-3 deficiency delays skin wound healing in mice due to defects in channel functionality. J Invest Dermatol 139(4):909–918

    Article  CAS  Google Scholar 

  38. Zhang P, Ishikawa M, Doyle A, Nakamura T, He B, Yamada Y (2021) Pannexin 3 regulates skin development via Epiprofin. Sci Rep 11(1):1779. https://doi.org/10.1038/s41598-021-81074-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Thompson RJ, Zhou N, MacVicar BA (2006) Ischemia opens neuronal gap junction hemichannels. Science 312(5775):924–927. https://doi.org/10.1126/science.1126241

    Article  CAS  PubMed  Google Scholar 

  40. Bond SR, Abramyan J, Fu K, Naus CC, Richman JM (2016) Pannexin 3 is required for late stage bone growth but not for initiation of ossification in avian embryos. Dev Dyn 245(9):913–924. https://doi.org/10.1002/dvdy.24425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Song F, Sun H, Huang L, Fu D, Huang C (2017) The role of pannexin3-modified human dental pulp-derived mesenchymal stromal cells in repairing rat cranial critical-sized bone defects. Cell Physiol Biochem 44(6):2174–2188. https://doi.org/10.1159/000486023

    Article  CAS  PubMed  Google Scholar 

  42. Penuela S, Kelly JJ, Churko JM, Barr KJ, Berger AC, Laird DW (2014) Panx1 regulates cellular properties of keratinocytes and dermal fibroblasts in skin development and wound healing. J Invest Dermatol 134(7):2026–2035. https://doi.org/10.1038/jid.2014.86

    Article  CAS  PubMed  Google Scholar 

  43. Caskenette D, Penuela S, Lee V, Barr K, Beier F, Laird D, Willmore K (2016) Global deletion of Panx3 produces multiple phenotypic effects in mouse humeri and femora. J Anat 228 (746–756)

  44. Moon PM, Shao ZY, Wambiekele G, Appleton C, Laird DW, Penuela S, Beier F (2021) Global deletion of pannexin 3 accelerates development of aging-induced osteoarthritis in mice. Arthritis Rheumatol. https://doi.org/10.1002/art.41651

    Article  PubMed  Google Scholar 

  45. Halliwill K, Quigley D, Chung Kang H, Del Rosario R, Ginzinger D, Balmain A (2016) Panx3 links body mass index and tumorigenesis in a genetically heterogeneous mouse model of carcinogen-induced cancer. Genome Med 8:83–100

    Article  Google Scholar 

  46. Appleton CT, Pitelka V, Henry J, Beier F (2007) Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 56(6):1854–1868. https://doi.org/10.1002/art.22711

    Article  CAS  PubMed  Google Scholar 

  47. O’Connor M (2007) Sex differences in osteoarthritis of the hip and knee. J Am Acad Orthop Surg 15:S22–S25

    Article  Google Scholar 

  48. Quigley DA, Kandyba E, Huang P, Halliwill KD, Sjolund J, Pelorosso F, Wong CE, Hirst GL, Wu D, Delrosario R, Kumar A, Balmain A (2016) Gene expression architecture of mouse dorsal and tail skin reveals functional differences in inflammation and cancer. Cell Rep 16(4):1153–1165. https://doi.org/10.1016/j.celrep.2016.06.061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Romano RC, Gardner JM, Shalin SC, Ram R, Govindarajan R, Montgomery CO, Gilley JH, Nicholas RW (2016) High relative expression of Pannexin 3 (PANX3) in an axillary sweat gland carcinoma with osteosarcomatous transformation. Am J Dermatopathol 38(11):846–851

    Article  Google Scholar 

  50. Ho XD, Phung P, V QL, V HN, Reimann E, Prans E, Koks G, Maasalu K, Le NT, L HT, H GN, Martson A, Koks S, (2017) Whole transcriptome analysis identifies differentially regulated networks between osteosarcoma and normal bone samples. Exp Biol Med (Maywood) 242(18):1802–1811. https://doi.org/10.1177/1535370217736512

    Article  CAS  Google Scholar 

  51. Sun S, Fu L, Wang G, Wang J, Xu L (2020) MicroRNA-431-5p Inhibits the tumorigenesis of osteosarcoma through targeting PANX3. Cancer Manag Res 12:8159–8169. https://doi.org/10.2147/CMAR.S260149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buvinic S, Almarza G, Bustamante M, Casas M, Lopez J, Riquelme M, Saez JC, Huidobro-Toro JP, Jaimovich E (2009) ATP released by electrical stimuli elicits calcium transients and gene expression in skeletal muscle. J Biol Chem 284(50):34490–34505. https://doi.org/10.1074/jbc.M109.057315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iglesias R, Locovei S, Roque A, Alberto AP, Dahl G, Spray DC, Scemes E (2008) P2X7 receptor-Pannexin1 complex: pharmacology and signaling. Am J Physiol Cell Physiol 295(3):C752-760. https://doi.org/10.1152/ajpcell.00228.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Locovei S, Scemes E, Qiu F, Spray DC, Dahl G (2007) Pannexin1 is part of the pore forming unit of the P2X(7) receptor death complex. FEBS Lett 581(3):483–488. https://doi.org/10.1016/j.febslet.2006.12.056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1β release by the ATP-gated P2X7 receptor. EMBO J 25(21):5071–5082. https://doi.org/10.1038/sj.emboj.7601378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silverman WR, de Rivero Vaccari JP, Locovei S, Qiu F, Carlsson SK, Scemes E, Keane RW, Dahl G (2009) The pannexin 1 channel activates the inflammasome in neurons and astrocytes. J Biol Chem 284(27):18143–18151. https://doi.org/10.1074/jbc.M109.004804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Qu Y, Misaghi S, Newton K, Gilmour LL, Louie S, Cupp JE, Dubyak GR, Hackos D, Dixit VM (2011) Pannexin-1 is required for ATP release during apoptosis but not for inflammasome activation. J Immunol 186(11):6553–6561. https://doi.org/10.4049/jimmunol.1100478

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Western University and Petro-Canada Young Innovator award to SP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Penuela.

Ethics declarations

Ethical approval

Experiments performed on animals were approved by the Animal Care Committee of the University Council on Animal Care at the University of Western Ontario, London ON, Canada (UWO # 2019–069), and in accordance with relevant guidelines and regulations.

Informed consent

Not applicable.

Conflicts of interest

No conflict of interest of any kind.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on The contribution of pannexin-1, connexins and CALHM ATP-release channels to purinergic signalling

Guest Editor: Charles Kennedy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Donnell, B.L., Penuela, S. Pannexin 3 channels in health and disease. Purinergic Signalling 17, 577–589 (2021). https://doi.org/10.1007/s11302-021-09805-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-021-09805-7

Keywords

Navigation