Skip to main content
Log in

Design and in vivo activity of A3 adenosine receptor agonist prodrugs

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Prodrugs (MRS7422, MRS7476) of highly selective A3 adenosine receptor (AR) agonists Cl-IB-MECA and MRS5698, respectively, were synthesized by succinylation of the 2′ and 3′ hydroxyl groups, and the parent, active drug was shown to be readily liberated upon incubation with liver esterases. The prodrug MRS7476 had greatly increased aqueous solubility compared with parent MRS5698 and was fully efficacious and with a longer duration than MRS7422 in reversing mouse neuropathic pain (chronic constriction injury model, 3 μmol/kg, p.o.), a known A3AR effect. MRS7476 (5 mg/kg, p.o., twice daily) was found to protect against non-alcoholic steatohepatitis (NASH) in the STAM mouse model, indicated by the NAFLD activity score. Hepatocyte ballooning, IL-10 production, and liver histology were significantly normalized in the MRS7476-treated mice, but not liver fibrosis (no change in ACTA2 levels) or inflammation. Hepatic expression of ADORA3 in human NAFLD patients was 1.9-fold lower compared to normal controls. Adora3 expression determined by qPCR in primary mouse liver was associated with the stellate cells, and its mouse full body A3AR knockout worsened liver markers of inflammation and steatosis. Thus, we have introduced a reversible prodrug strategy that enables water solubility and in vivo activity of masked A3AR agonists in models of two disease conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACTA2:

Smooth muscle α actin

ALT:

Alanine transaminase

AR:

Adenosine receptor

AUC:

Area under the curve

CCI:

Chronic constriction injury

Cl-IB-MECA:

2-Chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide

GPCR:

G protein-coupled receptor

HCC:

Hepatocellular carcinoma

IB-MECA:

N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide

IL-10:

Interleukin 10

MRS5698:

(1S,2R,3S,4R,5S)-4-(6-((3-chlorobenzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo[3.1.0]hexane-1-carboxamide

NAFLD:

Non-alcoholic fatty liver disease

NAS:

NAFLD activity score

NASH:

Non-alcoholic steatohepatitis

NLRP3:

Nucleotide-binding oligomerization domain-like receptor protein 3 (inflammasome)

OGTT:

Oral glucose tolerance test

SAR:

Structure activity relationship

TGFβ:

Transforming growth factor β

References

  1. Cekic C, Linden J (2016) Purinergic regulation of the immune system. Nat Rev Immunol 16:177–192

    Article  CAS  Google Scholar 

  2. Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nature Rev Drug Disc 5:247–264

    Article  CAS  Google Scholar 

  3. Varani K, Vincenzi F, Merighi S, Gessi S, Borea PA (2017) Biochemical and pharmacological role of A1 adenosine receptors and their modulation as novel therapeutic strategy. Adv Exp Med Biol - Protein Reviews pp. 193–232, DOI https://doi.org/10.1007/5584_2017_61

  4. Jacobson KA, Merighi S, Varani K, Borea PA, Baraldi S, Tabrizi MA, Romagnoli R, Baraldi PG, Ciancetta A, Tosh DK, Gao ZG, Gessi S (2017) A3 adenosine receptors as modulators of inflammation: from medicinal chemistry to therapy. Med Res Rev 38:1031–1072

    Article  Google Scholar 

  5. Preti D, Baraldi PG, Moorman AR, Borea PA, Varani K (2015) History and perspectives of A2A adenosine receptor antagonists as potential therapeutic agents. Med Res Rev 35:790–848. https://doi.org/10.1002/med.21344

    Article  CAS  PubMed  Google Scholar 

  6. Gao ZG, Balasubramanian R, Kiselev E, Wei Q, Jacobson KA (2014) Probing biased/partial agonism at the G protein-coupled A2B adenosine receptor. Biochem Pharmacol 90:297–306

    Article  CAS  Google Scholar 

  7. Cohen S, Barer F, Itzhak I, Silverman MH, Fishman P (2018) Inhibition of IL-17 and IL-23 in human keratinocytes by the A3 adenosine receptor agonist piclidenoson. J Immunol Res 2018:2310970

    Article  Google Scholar 

  8. Stoilov RM, Licheva RN, Mihaylova MK, Reitblat T, Dimitrov EA, Shimbova KM, Bhatia G, Pispati A, Gurman-Balbir A, Bagaria BR, Oparanov BA, Fishman S, Harpaz Z, Farbstein M, Cohen S, Bristol D, Silverman MH, Fishman P (2014) Therapeutic effect of oral CF101 in patients with rheumatoid arthritis: a randomized, double-blind, placebo-controlled phase II study. Immunome Res 11:1

    Article  Google Scholar 

  9. Stemmer M, Benjaminov F, Medalia G, Ciuraru NB, Silverman MH, Bar-Yehuda S, Fishman S, Harpaz Z, Farbstein M, Cohen S, Patoka R, Singer B, Kerns WD, Fishman P (2013) CF102 for the treatment of hepatocellular carcinoma: a phase I/II, open-label, dose-escalation study. Oncologist 18:25–26

    Article  Google Scholar 

  10. Ohana G, Cohen S, Rath-Wolfson L, Fishman P (2016) A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep 14(5):4335–4341

    Article  CAS  Google Scholar 

  11. David M, Gospodinov DK, Gheorghe N, Mateev GS, Rusinova MV, Hristakieva E, Solovastru LG, Patel RV, Giurcaneanu C, Hitova MC, Purcaru AI, Horia B, Tsingov II, Yankova RK, Kadurina MI, Ramon M, Rotaru M, Simionescu O, Benea V, Demerdjieva ZV, Cosgarea MR, Morariu HS, Michael Z, Cristodor P, Nica C, Silverman MH, Bristol DR, Harpaz Z, Farbstein M, Cohen S, Fishman P (2016) Treatment of plaque-type psoriasis with oral CF101: data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol 15(8):931–938

    CAS  PubMed  Google Scholar 

  12. Fishman P, Cohen S (2016) The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis. Clin Rheumatol 35:2359–2362

    Article  Google Scholar 

  13. Ochaion A, Bar-YehudaS CS, Barer F, Patoka R, Amital H, Reitblat T, Reitblat A, Ophir J, Konfino I, Chowers Y, Ben-Horin S, Fishman P (2009) The anti-inflammatory target A3 adenosine receptor is over-expressed in rheumatoid arthritis, psoriasis and Crohn’s disease. Cell Immunol 258:115–122

    Article  CAS  Google Scholar 

  14. Varani K, Padovan M, Vincenzi F, Vincenzi F, Targa M, Trotta F, Govoni M, Borea PA (2011) A2A and A3 adenosine receptor expression in rheumatoid arthritis: upregulation, inverse correlation with disease activity score and suppression of inflammatory cytokine and metalloproteinase release. Arthritis Res Ther 13:R197. https://doi.org/10.1186/ar3527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fishman P, Cohen S, Itzhak I, Amer J, Salhab A, Barer F, Safadi R (2019) The A3 adenosine receptor agonist, namodenoson, ameliorates non-alcoholic steatohepatitis in mice. Int J Mol Med 44(6):2256–2264. https://doi.org/10.3892/ijmm.2019.4364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Fishman P, Cohen SA (2017) A3 adenosine receptor ligand for use in treating ectopic fat accumulation. WO2017090036 (A1)

  17. Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J (2013) Wnt signaling in liver fibrosis: Progress, challenges and potential directions. Biochimie 95:2326–2335

    Article  CAS  Google Scholar 

  18. Janes K, Symons-Liguori AM, Jacobson KA, Salvemini D (2016) Identification of A3 adenosine receptor agonists as novel non-narcotic analgesics. Br J Pharmacol 173:1253–1267

    Article  CAS  Google Scholar 

  19. Tosh DK, Padia J, Salvemini D, Jacobson KA (2015) Efficient, large-scale synthesis and preclinical studies of MRS5698, a highly selective A3 adenosine receptor agonist that protects against chronic neuropathic pain. Purinergic Signal 11:371–387

    Article  CAS  Google Scholar 

  20. Wahlman C, Doyle T, Little JW, Luongo L, Janes K, Chen Z, Espostio E, Tosh DK, Cuzzocrea S, Jacobson KA, Salvemini D (2018) Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels via astrocyte-dependent mechanisms. Pain 159:1025–1034

    Article  CAS  Google Scholar 

  21. Tosh DK, Finley A, Paoletta S, Moss SM, Gao ZG, Gizewski E, Auchampach J, Salvemini D, Jacobson KA (2014) In vivo phenotypic screening for treating chronic neuropathic pain: modification of C2-arylethynyl group of conformationally constrained A3 adenosine receptor agonists. J Med Chem 57:9901–9914

    Article  CAS  Google Scholar 

  22. Tosh DK, Deflorian F, Phan K, Gao ZG, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2012) Structure-guided design of A3 adenosine receptor-selective nucleosides: combination of 2-arylethynyl and bicyclo[3.1.0]hexane substitutions. J Med Chem 55:4847–4860

    Article  CAS  Google Scholar 

  23. Rautio J, Meanwell N, Di L, Hageman MJ (2018) The expanding role of prodrugs in contemporary drug design and development. Nat Rev Drug Discov 17:559–587

    Article  CAS  Google Scholar 

  24. Sheahan TP, Sims AC, Zhou S, Graham RL, Pruijssers AJ, Agostini ML, Leist SR, Schäfer A, Dinnon KH III, Stevens LJ, Chappell JD, Lu X, Hughes TM, George AS, Hill CS, Montgomery SA, Brown AJ, Bluemling GR, Natchus MG, Saindane M, Kolykhalov AA, Painter G, Harcourt J, Tamin A, Thornburg NJ, Swanstrom R, Denison MR, Baric RS (2020) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med 12(541):eabb5883. https://doi.org/10.1126/scitranslmed.abb5883

    Article  CAS  PubMed  Google Scholar 

  25. Besada P, Mamedova LK, Palaniappan KK, Gao ZG, Joshi BV, Jeong LS, Civan MM, Jacobson KA (2006) Nucleoside prodrugs of A3 adenosine receptor agonists and antagonists. Collect Czechoslov Chem Commun 71:912–928

    Article  CAS  Google Scholar 

  26. Bennett GJ, Xie YK (1988) A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33:87–107

    Article  CAS  Google Scholar 

  27. Jain S, Tosh DK, Reitman ML, Jacobson KA (2019) Role of A1 and A3 adenosine receptors in whole body glucose metabolism. ADA abstract 280-LB. https://doi.org/10.2337/db19-280-LB

  28. Dittert LW, Caldwell HC, Adams HJ, Irwin GM, Swintosky JV (1968) Acetaminophen prodrugs I. synthesis, physicochemical properties, and analgesic activity. J Pharm Sci 57(5):774–780. https://doi.org/10.1002/jps.2600570510

    Article  CAS  PubMed  Google Scholar 

  29. Fu Q, Wang Y, Ma Y, Zhang D, Fallon JK, Yang X, Liu D, He Z, Liu F (2015) Programmed hydrolysis in designing paclitaxel prodrug for nanocarrier assembly. Sci Rep 5(1):12023. https://doi.org/10.1038/srep12023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biasutto L, Marotta E, Bradaschia A, Fallica M, Mattarei A, Garbisa S, Zoratti M, Paradisi C (2009) Soluble polyphenols: synthesis and bioavailability of 3,4′,5-tri (alpha-D-glucose-3-O-succinyl) resveratrol. Bioorg Med Chem Lett 19:6721–6724. https://doi.org/10.1016/j.bmcl.2009.09.114

    Article  CAS  PubMed  Google Scholar 

  31. Wichitnithad W, Nimmannit U, Wacharasindhu S, Rojsitthisak P (2011) Synthesis, characterization and biological evaluation of succinate prodrugs of curcuminoids for colon cancer treatment. Molecules 16:1888–1900

    Article  CAS  Google Scholar 

  32. Vollmann K, Qurishi R, Hockemeyer J, Müller CE (2008) Synthesis and properties of a new water-soluble prodrug of the adenosine A2A receptor antagonist MSX-2. Molecules 13(2):348–359. https://doi.org/10.3390/molecules13020348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Melman A, Gao ZG, Kumar D, Wan TC, Gizewski E, Auchampach JA, Jacobson KA (2008) Design of (N)-methanocarba adenosine 5′-uronamides as species-independent A3 receptor-selective agonists. Bioorg Med Chem Lett 18:2813–2819

    Article  CAS  Google Scholar 

  34. Besnard J, Ruda GF, Setola V, Abecassis K, Rodriguiz RM, Huang XP, Norval S, Sassano MF, Shin AI, Webster LA, Simeons FR, Stojanovski L, Prat A, Seidah NG, Constam DB, Bickerton GR, Read KD, Wetsel WC, Gilbert IH, Roth BL, Hopkins AL (2012) Automated design of ligands to polypharmacological profiles. Nature 492:215–220

    Article  CAS  Google Scholar 

  35. Gupta P, Sata TN, Yadav AK, Mishra A, Vats N, Hossain MM, Sanal MG, Venugopal SK (2019) TGF-β induces liver fibrosis via miRNA-181a-mediated down regulation of augmenter of liver regeneration in hepatic stellate cells. PLoS One 14(6):e0214534. https://doi.org/10.1371/journal.pone.0214534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rockey DC, Du Q, Shi Z (2019) Smooth muscle α-actin deficiency leads to decreased liver fibrosis via impaired cytoskeletal signaling in hepatic stellate cells. Am J Pathol 189(11):2209–2220. https://doi.org/10.1016/j.ajpath.2019.07.019

    Article  CAS  PubMed  Google Scholar 

  37. Yokohama K, Fukunishi S, Ii M, Nakamura K, Ohama H, Tsuchimoto Y, Asai A, Tsuda Y, Higuchi K (2016) Rosuvastatin as a potential preventive drug for the development of hepatocellular carcinoma associated with non-alcoholic fatty liver disease in mice. Int J Mol Med 38:1499–1506. https://doi.org/10.3892/ijmm.2016.2766

    Article  CAS  PubMed  Google Scholar 

  38. Takakura K, Koido S, Fujii M, Hashiguchi T, Shibazaki Y, Yoneyama H, Katagi H, Kajihara M, Misawa T, Homma S, Ohkusa T, Tajiri H (2014) Characterization of non-alcoholic steatohepatitis-derived hepatocellular carcinoma as a human stratification model in mice. Anticancer Res 34:4849–4855

    PubMed  Google Scholar 

  39. Takakura K, Oikawa T, Tomita Y, Mizuno Y, Nakano M, Saeki C, Torisu Y, Saruta M (2018) Mouse models for investigating the underlying mechanisms of nonalcoholic steatohepatitis-derived hepatocellular carcinoma. World J Gastroenterol 24(18):1989–1994. https://doi.org/10.3748/wjg.v24.i18.1989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Park JG, Mok JS, Han YI, Park TS, Kang KW, Choi CS, Park HD, Park J (2019) Connectivity mapping of angiotensin-PPAR interactions involved in the amelioration of non-alcoholic steatohepatitis by Telmisartan. Sci Rep 9:4003. https://doi.org/10.1038/s41598-019-40322-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Farrell TL, Dew TP, Poquet L, Hanson P, Williamson G (2011) Absorption and metabolism of chlorogenic acids in cultured gastric epithelial monolayers. Drug Metab Dispos 39(12):2338–2346

    Article  CAS  Google Scholar 

  42. Bedossa P (2017) Pathology of non-alcoholic fatty liver disease. Liver Int 37:85–89

    Article  Google Scholar 

  43. Romero FA, Jones C, Xu Y, Fenaux M, Halcomb RL (2020) The race to bash NASH: emerging targets and drug development in a complex liver disease. J Med Chem 63:5031–5073

    Article  CAS  Google Scholar 

  44. Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K (2017) Mouse models of nonalcoholic steatohepatitis in preclinical drug development. Drug Discov Today 22:1707–1718. https://doi.org/10.1016/j.drudis.2017.06.007

    Article  CAS  PubMed  Google Scholar 

  45. Oniciu DC, Hashiguchi T, Shibazaki Y, Bisgaier CL (2018) Gemcabene downregulates inflammatory, lipid-altering and cell-signaling genes in the STAM™ model of NASH. PLoS One 13(5):e0194568. https://doi.org/10.1371/journal.pone.0194568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sanyal AJ, Brunt EM, Kleiner DE, Kowdley KV, Chalasani N, Lavine JE, Ratziu V, McCullough A (2011) Endpoints and clinical trial design for nonalcoholic steatohepatitis. Hepatology 54:344–353

    Article  Google Scholar 

Download references

Funding

This work has been supported by funds from SLU (Salvemini Start-Up Funds) and NIDDK Intramural Research Program (Jacobson, ZIADK31117; Rotman, ZIADK75013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Jacobson.

Ethics declarations

Conflict of interest

All other authors claim no conflicts of interest.

Ethical approval

All procedures were conducted in accordance with the International Association for the Study of Pain, the National Institutes of Health guidelines on laboratory animal welfare guidelines, and the approval of Saint Louis University and NIDDK Institutional Animal Care and Use Committees.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 2.35 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh, R.R., Jain, S., Chen, Z. et al. Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signalling 16, 367–377 (2020). https://doi.org/10.1007/s11302-020-09715-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09715-0

Keywords

Navigation