Skip to main content
Log in

Limonene-induced activation of A2A adenosine receptors reduces airway inflammation and reactivity in a mouse model of asthma

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Animal models of asthma have shown that limonene, a naturally occurring terpene in citrus fruits, can reduce inflammation and airway reactivity. However, the mechanism of these effects is unknown. We first performed computational and molecular docking analyses that showed limonene could bind to both A2A and A2B receptors. The pharmacological studies were carried out with A2A adenosine receptor knock-out (A2AKO) and wild-type (WT) mice using ovalbumin (OVA) to generate the asthma phenotype. We investigated the effects of limonene on lung inflammation and airway responsiveness to methacholine (MCh) and NECA (nonselective adenosine analog) by administering limonene as an inhalation prior to OVA aerosol challenges in one group of allergic mice for both WT and KO. In whole-body plethysmography studies, we observed that airway responsiveness to MCh in WT SEN group was significantly lowered upon limonene treatment but no effect was observed in A2AKO. Limonene also attenuated NECA-induced airway responsiveness in WT allergic mice with no effect being observed in A2AKO groups. Differential BAL analysis showed that limonene reduced levels of eosinophils in allergic WT mice but not in A2AKO. However, limonene reduced neutrophils in sensitized A2AKO mice, suggesting that it may activate A2B receptors as well. These data indicate that limonene-induced reduction in airway inflammation and airway reactivity occurs mainly via activation of A2AAR but A2B receptors may also play a supporting role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barnes PJ (1996) Pathophysiology of asthma. Br J Clin Pharmacol 42(1):3–10

    Article  CAS  Google Scholar 

  2. Chi G, Wei M, Xie X, Soromou LW, Liu F, Zhao S (2013) Suppression of MAPK and NF-kappaB pathways by limonene contributes to attenuation of lipopolysaccharide-induced inflammatory responses in acute lung injury. Inflammation 36(2):501–511

    Article  CAS  Google Scholar 

  3. Tanaka T, Takahashi R (2013) Flavonoids and asthma. Nutrients 5(6):2128–2143

    Article  CAS  Google Scholar 

  4. Hirota R et al (2012) Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol 24(6):373–381

    Article  CAS  Google Scholar 

  5. Zuo L et al (2013) Molecular mechanisms of reactive oxygen species-related pulmonary inflammation and asthma. Mol Immunol 56(1–2):57–63

    Article  CAS  Google Scholar 

  6. Bibi H, Reany O, Waisman D, Keinan E (2015) Prophylactic treatment of asthma by an ozone scavenger in a mouse model. Bioorg Med Chem Lett 25(2):342–346

    Article  CAS  Google Scholar 

  7. Hirota R, Roger NN, Nakamura H, Song HS, Sawamura M, Suganuma N (2010) Anti-inflammatory effects of limonene from yuzu (Citrus junos Tanaka) essential oil on eosinophils. J Food Sci 75(3):H87–H92

    Article  CAS  Google Scholar 

  8. Lambrecht BN, Hammad H (2013) Asthma: the importance of dysregulated barrier immunity. Eur J Immunol 43(12):3125–3137

    Article  CAS  Google Scholar 

  9. Kay AB (2005) The role of eosinophils in the pathogenesis of asthma. Trends Mol Med 11(4):148–152

    Article  CAS  Google Scholar 

  10. Wenzel SE et al (1997) Bronchoscopic evaluation of severe asthma. Persistent inflammation associated with high dose glucocorticoids. Am J Respir Crit Care Med 156(3 Pt 1):737–743

    Article  CAS  Google Scholar 

  11. Driver AG et al (1993) Adenosine in bronchoalveolar lavage fluid in asthma. Am Rev Respir Dis 148(1):91–97

    Article  CAS  Google Scholar 

  12. Cushley MJ, Tattersfield AE, Holgate ST (1984) Adenosine-induced bronchoconstriction in asthma. Antagonism by inhaled theophylline. Am Rev Respir Dis 129(3):380–384

    CAS  PubMed  Google Scholar 

  13. Mann JS et al (1986) Airway effects of purine nucleosides and nucleotides and release with bronchial provocation in asthma. J Appl Physiol (1985) 61(5):1667–1676

    Article  CAS  Google Scholar 

  14. Tawfik HE et al (2005) Role of A1 adenosine receptors in regulation of vascular tone. Am J Physiol Heart Circ Physiol 288(3):H1411–H1416

    Article  CAS  Google Scholar 

  15. Talukder MA et al (2002) Targeted deletion of adenosine A(3) receptors augments adenosine-induced coronary flow in isolated mouse heart. Am J Physiol Heart Circ Physiol 282(6):H2183–H2189

    Article  CAS  Google Scholar 

  16. Abebe W, Makujina SR, Mustafa SJ (1994) Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am J Phys 266(5 Pt 2):H2018–H2025

    CAS  Google Scholar 

  17. Mustafa S, Abebe W (1996) Coronary vasodilation by adenosine receptor subtypes and mechanism of action. Drug Dev Res

  18. Park HM et al (2011) Limonene, a natural cyclic terpene, is an agonistic ligand for adenosine A(2A) receptors. Biochem Biophys Res Commun 404(1):345–348

    Article  CAS  Google Scholar 

  19. Siddiquee A, Patel M, Rajalingam S, Narke D, Kurade M, Ponnoth DS (2019) Effect of omega-3 fatty acid supplementation on resolvin (RvE1)-mediated suppression of inflammation in a mouse model of asthma. Immunopharmacol Immunotoxicol 41(2):250–257

    Article  CAS  Google Scholar 

  20. Patel M et al (2019) Role of angiotensin II type 1 (AT1) and type 2 (AT2) receptors in airway reactivity and inflammation in an allergic mouse model of asthma. Immunopharmacol Immunotoxicol 41(3):428–437

    Article  CAS  Google Scholar 

  21. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332(6027):322–327

    Article  CAS  Google Scholar 

  22. Jacobson MP, Pincus DL, Rapp CS, Day TJ, Honig B, Shaw DE, Friesner RA (2004) A hierarchical approach to all-atom protein loop prediction. Proteins 55(2):351–367

    Article  CAS  Google Scholar 

  23. Halgren TA, Murphy RB, Friesner RA, Beard HS, Frye LL, Pollard WT, Banks JL (2004) Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J Med Chem 47(7):1750–1759

    Article  CAS  Google Scholar 

  24. Fan M, Mustafa SJ (2002) Adenosine-mediated bronchoconstriction and lung inflammation in an allergic mouse model. Pulm Pharmacol Ther 15(2):147–155

    Article  CAS  Google Scholar 

  25. Hinz S et al (2014) BAY60-6583 acts as a partial agonist at adenosine A2B receptors. J Pharmacol Exp Ther 349(3):427–436

    Article  Google Scholar 

  26. Drazen JM, Finn PW, De Sanctis GT (1999) Mouse models of airway responsiveness: physiological basis of observed outcomes and analysis of selected examples using these outcome indicators. Annu Rev Physiol 61:593–625

    Article  CAS  Google Scholar 

  27. El-Hashim AZ, Mathews S, Al-Shamlan F (2018) Central adenosine A1 receptors inhibit cough via suppression of excitatory glutamatergic and tachykininergic neurotransmission. Br J Pharmacol 175(15):3162–3174

    Article  CAS  Google Scholar 

  28. Rajavelu P, Chen G, Xu Y, Kitzmiller JA, Korfhagen TR, Whitsett JA (2015) Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation. J Clin Invest 125(5):2021–2031

    Article  Google Scholar 

  29. Bosnjak B et al (2014) Tiotropium bromide inhibits relapsing allergic asthma in BALB/c mice. Pulm Pharmacol Ther 27(1):44–51

    Article  CAS  Google Scholar 

  30. Nadeem A, Ponnoth DS, Ansari HR, Batchelor TP, Dey RD, Ledent C, Mustafa SJ (2009) A2A adenosine receptor deficiency leads to impaired tracheal relaxation via NADPH oxidase pathway in allergic mice. J Pharmacol Exp Ther 330(1):99–108

    Article  CAS  Google Scholar 

  31. Hansen JS et al (2016) Limonene and its ozone-initiated reaction products attenuate allergic lung inflammation in mice. J Immunotoxicol 13(6):793–803

    Article  CAS  Google Scholar 

  32. Bousquet J et al (1990) Eosinophilic inflammation in asthma. N Engl J Med 323(15):1033–1039

    Article  CAS  Google Scholar 

  33. Trivedi SG, Lloyd CM (2007) Eosinophils in the pathogenesis of allergic airways disease. Cell Mol Life Sci 64(10):1269–1289

    Article  CAS  Google Scholar 

  34. Eschenbacher WL, Gravelyn TR (1987) A technique for isolated airway segment lavage. Chest 92(1):105–109

    Article  CAS  Google Scholar 

  35. Barletta KE, Ley K, Mehrad B (2012) Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol 32(4):856–864

    Article  CAS  Google Scholar 

  36. Stone KD, Prussin C, Metcalfe DD (2010) IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol 125(2 Suppl 2):S73–S80

    Article  Google Scholar 

  37. Oettgen HC et al (1994) Active anaphylaxis in IgE-deficient mice. Nature 370(6488):367–370

    Article  CAS  Google Scholar 

  38. Mehlhop PD et al (1997) Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci U S A 94(4):1344–1349

    Article  CAS  Google Scholar 

  39. Shi HZ, Xiao CQ, Zhong D, Qin SM, Liu Y, Liang GR, Xu H, Chen YQ, Long XM, Xie ZF (1998) Effect of inhaled interleukin-5 on airway hyperreactivity and eosinophilia in asthmatics. Am J Respir Crit Care Med 157(1):204–209

    Article  CAS  Google Scholar 

  40. Woodruff PG et al (2001) Relationship between airway inflammation, hyperresponsiveness, and obstruction in asthma. J Allergy Clin Immunol 108(5):753–758

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by LIU startup funds (DSP) and National Institutes of Health grant HL027339 (SJM).

Funding

Long Island University start-up funds (DSP), HL027339 (SJM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dovenia S. Ponnoth.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed. All procedures performed were in accordance with the ethical standards of Long Island University under an approved IACUC protocol DP-AA-2018.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 8.41 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, M., Narke, D., Kurade, M. et al. Limonene-induced activation of A2A adenosine receptors reduces airway inflammation and reactivity in a mouse model of asthma. Purinergic Signalling 16, 415–426 (2020). https://doi.org/10.1007/s11302-020-09697-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09697-z

Keywords

Navigation