Skip to main content
Log in

LncRNA NONRATT021972 siRNA attenuates P2X7 receptor expression and inflammatory cytokine production induced by combined high glucose and free fatty acids in PC12 cells

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Diabetic neuropathy (DNP) is a frequent chronic complication of diabetes mellitus with potentially life-threatening outcomes. High glucose and elevated free fatty acids (FFAs) have been recently recognized as major causes of nervous system damage in diabetes. Our previous study has indicated extracellular stimuli, such as high glucose and/or FFA stress, may activate the p38 mitogen-activated protein kinase (MAPK) signaling pathway and induce a p38 MAPK-dependent sensitization of the P2X7 receptor and release of inflammatory factors in PC12 cells, while the mechanisms underlying remain to be elucidated. Long noncoding RNAs (lncRNAs) play important roles in diverse biological processes, including activation of a series of pathway signalings. Here, we showed combined high d-glucose and FFAs (HGHF) induced an increment of lncRNA-NONRATT021972 (NONCODE ID, nc021972) in PC12 cells. Nc021972 small interference RNA (siRNA) alleviated HGHF-induced activation of p38 MAPK, expression of the P2X7 receptor, and [Ca2+]i increment upon P2X7 receptor activation. Further experiments showed that there existed a crosstalk between nc021972 and the p38 MAPK signaling pathway. Inhibition of p38 MAPK signaling decreased nc021972-induced expression of the P2X7 receptor and [Ca2+]i increment upon P2X7 receptor activation. Also, nc021972 siRNA inhibited HGHF-induced PC12 release of TNF-α and IL-6 and rescued decreased cell viability mediated by the P2X7 receptor. Therefore, inhibition of nc021972 may serve as a novel therapeutic strategy for diabetes complicated with nervous inflammatory diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis GF, Carpentier A, Adeli K, Giacca A (2002) Disordered fat storage and mobilization in the pathogenesis of insulin resistance and type 2 diabetes. Endocr Rev 23:201–229

    Article  CAS  PubMed  Google Scholar 

  2. Tomlinson DR, Gardiner NJ (2008) Glucose neurotoxicity. Nat Rev Neurosci 9:36–45

    Article  CAS  PubMed  Google Scholar 

  3. Pop-Busui R (2010) Cardiac autonomic neuropathy in diabetes: a clinical perspective. Diabetes Care 33:434–441

    Article  PubMed  PubMed Central  Google Scholar 

  4. Freeman R (2014) Diabetic autonomic neuropathy. Handb Clin Neurol 126:63–79

    Article  PubMed  Google Scholar 

  5. Carroll SL, Byer SJ, Dorsey DA, Watson MA, Schmidt RE (2004) Ganglion-specific patterns of diabetes-modulated gene expression are established in prevertebral and paravertebral sympathetic ganglia prior to the development of neuroaxonal dystrophy. J Neuropathol Exp Neurol 63:1144–1154

    Article  PubMed  Google Scholar 

  6. Xu H, Wu B, Jiang F, Xiong S, Zhang B, Li G, Liu S, Gao Y, Xu C, Tu G, Peng H, Liang S, Xiong H (2013) High fatty acids modulate P2X(7) expression and IL-6 release via the p38 MAPK pathway in PC12 cells. Brain Res Bull 94:63–70

    Article  CAS  PubMed  Google Scholar 

  7. Fan B, Gu JQ, Yan R, Zhang H, Feng J, Ikuyama S (2013) High glucose, insulin and free fatty acid concentrations synergistically enhance perilipin 3 expression and lipid accumulation in macrophages. Metabolism 62:1168–1179

    Article  CAS  PubMed  Google Scholar 

  8. Singh H, Brindle NP, Zammit VA (2010) High glucose and elevated fatty acids suppress signaling by the endothelium protective ligand angiopoietin-1. Microvasc Res 79:121–127

    Article  CAS  PubMed  Google Scholar 

  9. Shafer TJ, Atchison WD (1991) Transmitter, ion channel and receptor properties of pheochromocytoma (PC12) cells: a model for neurotoxicological studies. Neurotoxicology 12:473–492

    CAS  PubMed  Google Scholar 

  10. Fan B, Liu S, Xu C, Liu J, Kong F, Li G, Zhang C, Gao Y, Xu H, Yu S, Zheng C, Peng L, Song M, Wu B, Lv Q, Zou L, Ying M, Zhang X, Liang S (2014) The role of P2X7 receptor in PC12 cells after exposure to oxygen-glucose deprivation. Auton Neurosci 185:36–42

    Article  CAS  PubMed  Google Scholar 

  11. Vizi ES, Sperlagh B, Baranyi M (1992) Evidence that ATP released from the postsynaptic site by noradrenaline, is involved in mechanical responses of guinea-pig vas deferens: cascade transmission. Neuroscience 50:455–465

    Article  CAS  PubMed  Google Scholar 

  12. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659–797

    Article  CAS  PubMed  Google Scholar 

  13. Burnstock G, Krugel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  CAS  PubMed  Google Scholar 

  14. Burnstock G (2014) Purinergic signalling: from discovery to current developments. Exp Physiol 99:16–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vizi ES, Liang SD, Sperlagh B, Kittel A, Juranyi Z (1997) Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neuroscience 79:893–903

    Article  CAS  PubMed  Google Scholar 

  16. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  17. Solini A, Chiozzi P, Morelli A, Adinolfi E, Rizzo R, Baricordi OR, Di Virgilio F (2004) Enhanced P2X7 activity in human fibroblasts from diabetic patients: a possible pathogenetic mechanism for vascular damage in diabetes. Arterioscler Thromb Vasc Biol 24:1240–1245

    Article  CAS  PubMed  Google Scholar 

  18. Oliver MF, Opie LH (1994) Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 343:155–158

    Article  CAS  PubMed  Google Scholar 

  19. Selzner N, Selzner M, Graf R, Ungethuem U, Fitz JG, Clavien PA (2004) Water induces autocrine stimulation of tumor cell killing through ATP release and P2 receptor binding. Cell Death Differ 11(Suppl 2):S172–S180

    Article  CAS  PubMed  Google Scholar 

  20. Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007) The role of the purinergic P2X7 receptor in inflammation. J Inflamm (Lond) 4:5

    Article  Google Scholar 

  21. Volonte C, Apolloni S, Skaper SD, Burnstock G (2012) P2X7 receptors: channels, pores and more. CNS Neurol Disord Drug Targets 11:705–721

    Article  CAS  PubMed  Google Scholar 

  22. Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S (2013) P2X(7) inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 96:71–85

    Article  CAS  PubMed  Google Scholar 

  23. Kong F, Liu S, Xu C, Liu J, Li G, Li G, Gao Y, Lin H, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S (2013) Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury. Neurochem Int 63:230–237

    Article  CAS  PubMed  Google Scholar 

  24. Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Li G, Liang S (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu H, Xiong C, He L, Wu B, Peng L, Cheng Y, Jiang F, Tan L, Tang L, Tu Y, Yang Y, Liu C, Gao Y, Li G, Zhang C, Liu S, Xu C, Wu H, Li G, Liang S (2015) Trans-resveratrol attenuates high fatty acid-induced P2X7 receptor expression and IL-6 release in PC12 cells: possible role of P38 MAPK pathway. Inflammation 38:327–337

    Article  CAS  PubMed  Google Scholar 

  26. Ng SY, Lin L, Soh BS, Stanton LW (2013) Long noncoding RNAs in development and disease of the central nervous system. Trends Genet 29:461–468

    Article  CAS  PubMed  Google Scholar 

  27. Qureshi IA, Mattick JS, Mehler MF (2010) Long non-coding RNAs in nervous system function and disease. Brain Res 1338:20–35

    Article  CAS  PubMed  Google Scholar 

  28. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    Article  CAS  PubMed  Google Scholar 

  29. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Harries LW (2012) Long non-coding RNAs and human disease. Biochem Soc Trans 40:902–906

    Article  CAS  PubMed  Google Scholar 

  31. Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  CAS  PubMed  Google Scholar 

  32. Yu Y, Fuscoe JC, Zhao C, Guo C, Jia M, Qing T, Bannon DI, Lancashire L, Bao W, Du T, Luo H, Su Z, Jones WD, Moland CL, Branham WS, Qian F, Ning B, Li Y, Hong H, Guo L, Mei N, Shi T, Wang KY, Wolfinger RD, Nikolsky Y, Walker SJ, Duerksen-Hughes P, Mason CE, Tong W, Thierry-Mieg J, Thierry-Mieg D, Shi L, Wang C (2014) A rat RNA-Seq transcriptomic BodyMap across 11 organs and 4 developmental stages. Nat Commun 5:3230

    PubMed  PubMed Central  Google Scholar 

  33. Bournival J, Francoeur MA, Renaud J, Martinoli MG (2012) Quercetin and sesamin protect neuronal PC12 cells from high-glucose-induced oxidation, nitrosative stress, and apoptosis. Rejuvenation Res 15:322–333

    Article  CAS  PubMed  Google Scholar 

  34. Hirose H, Lee YH, Inman LR, Nagasawa Y, Johnson JH, Unger RH (1996) Defective fatty acid-mediated beta-cell compensation in Zucker diabetic fatty rats. Pathogenic implications for obesity-dependent diabetes. J Biol Chem 271:5633–5637

    Article  CAS  PubMed  Google Scholar 

  35. Tang Y, Li GD (2004) Chronic exposure to high glucose impairs bradykinin-stimulated nitric oxide production by interfering with the phospholipase-C-implicated signalling pathway in endothelial cells: evidence for the involvement of protein kinase C. Diabetologia 47:2093–2104

    Article  CAS  PubMed  Google Scholar 

  36. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  37. North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    Article  CAS  PubMed  Google Scholar 

  38. Reddy MA, Chen Z, Park JT, Wang M, Lanting L, Zhang Q, Bhatt K, Leung A, Wu X, Putta S, Saetrom P, Devaraj S, Natarajan R (2014) Regulation of inflammatory phenotype in macrophages by a diabetes-induced long noncoding RNA. Diabetes 63:4249–4261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Smith AG, Singleton JR (2012) Diabetic neuropathy. Continuum (Minneap Minn) 18:60–84

    Google Scholar 

  40. Ando RD, Sperlagh B (2013) The role of glutamate release mediated by extrasynaptic P2X7 receptors in animal models of neuropathic pain. Brain Res Bull 93:80–85

    Article  CAS  PubMed  Google Scholar 

  41. Correa SA, Eales KL (2012) The role of p38 MAPK and its substrates in neuronal plasticity and neurodegenerative disease. J Signal Transduct 2012:649079

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, Yan B, Jiang Q (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by grants (nos. 81171184,81360140,81360136,81570735,81560219, 81302501 and 81560529) from the National Natural Science Foundation of China, grants (nos. 20151BBG70249, 20132BAB215005, and 20122BAB215005) from the Natural Science Foundation of Jiangxi Province, a grant (nos. GJJ14093 and GJJ14319) from the Education Department of Jiangxi Province, a grant (no. 20155643) from the Foundation of the Health Department of Jiangxi Province, and grants (nos. 201410403132, 201510403039, YC2015-S041, 20140611, 2015195 and 14001840) from the Nanchang University Students’ Innovation and Entrepreneurship Training Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shangdong Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, H., He, L., Liu, C. et al. LncRNA NONRATT021972 siRNA attenuates P2X7 receptor expression and inflammatory cytokine production induced by combined high glucose and free fatty acids in PC12 cells. Purinergic Signalling 12, 259–268 (2016). https://doi.org/10.1007/s11302-016-9500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9500-0

Keywords

Navigation