Skip to main content
Log in

Insulin requires A1 adenosine receptors expression to reverse gestational diabetes-increased L-arginine transport in human umbilical vein endothelium

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) associates with increased L-arginine transport and extracellular concentration of adenosine in human umbilical vein endothelial cells (HUVECs). In this study we aim to determine whether insulin reverses GDM-increased L-arginine transport requiring adenosine receptors expression in HUVECs. Primary cultured HUVECs from full-term normal (n = 38) and diet-treated GDM (n = 38) pregnancies were used. Insulin effect was assayed on human cationic amino acid transporter 1 (hCAT1) expression (protein, mRNA, SLC7A1 promoter activity) and activity (initial rates of L-arginine transport) in the absence or presence of adenosine receptors agonists or antagonists. A1 adenosine receptors (A1AR) and A2AAR expression (Western blot, quantitative PCR) was determined. Experiments were done in cells expressing or siRNA-suppressed expression of A1AR or A2AAR. HUVECs from GDM exhibit higher maximal transport capacity (maximal velocity (V max)/apparent Michaelis Menten constant (K m), V max/K m), which is blocked by insulin by reducing the V max to values in cells from normal pregnancies. Insulin also reversed the GDM-associated increase in hCAT-1 protein abundance and mRNA expression, and SLC7A1 promoter activity for the fragment −606 bp from the transcription start point. Insulin effects required A1AR, but not A2AAR expression and activity in this cell type. In the absence of insulin, GDM-increased hCAT-1 expression and activity required A2AAR expression and activity. HUVECs from GDM pregnancies exhibit a differential requirement of A1AR or A2AAR depending on the level of insulin, a phenomenon that represent a condition where adenosine or analogues of this nucleoside could be acting as helpers of insulin biological effects in GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GDM:

Gestational diabetes mellitus

NO:

Nitric oxide

eNOS:

Endothelial NO synthase

HUVECs:

Human umbilical vein endothelial cells

hPMECs:

Human placental microvascular endothelial cells

ARs:

Adenosine receptors

A1AR:

A1 adenosine receptors

A2AAR:

A2A adenosine receptors

A2BAR:

A2B adenosine receptors

A3AR:

A3 adenosine receptors

hCAT-1:

Human cationic amino acid transporter 1

hENT1:

Human equilibrative nucleoside transporters 1

siRNA:

Short interference RNAs

KDA1AR:

A1AR knockdown cells

KDA2AAR:

A2AAR knockdown cells

CHOP:

C/EBP homologous protein 10.

References

  1. Metzger BE, Buchanan TA, Coustan DR, de Leiva A, Dunger DB, Hadden DR, Hod M, Kitzmiller JL, Kjos SL, Oats JN, Pettitt DJ, Sacks DA, Zoupas C (2007) Summary and recommendations of the Fifth International Workshop-Conference on Gestational Diabetes Mellitus. Diabetes Care 30:251–260

    Article  Google Scholar 

  2. Colomiere M, Permezel M, Riley C, Desoye G, Lappas M (2009) Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus. Eur J Endocrinol 160:567–578

    Article  CAS  PubMed  Google Scholar 

  3. Sobrevia L, Salsoso R, Sáez T, Sanhueza C, Pardo F, Leiva A (2015) Insulin therapy and fetoplacental vascular function in gestational diabetes mellitus. Exp Physiol 100:231–238

    Article  CAS  PubMed  Google Scholar 

  4. Vásquez G, Sanhueza F, Vásquez R, González M, San Martín R, Casanello P, Sobrevia L (2004) Role of adenosine transport in gestational diabetes-induced L-arginine transport and nitric oxide synthesis in human umbilical vein endothelium. J Physiol 560:111–122

    Article  PubMed Central  PubMed  Google Scholar 

  5. Calabrò RS, Gervasi G, Bramanti P (2014) L-Arginine and vascular diseases: lights and pitfalls! Acta Biomed 85:222–228

    PubMed  Google Scholar 

  6. Guzmán-Gutiérrez E, Westermeier F, Salomón C, González M, Pardo F, Leiva A, Sobrevia L (2012) Insulin-increased L-arginine transport requires A2A adenosine receptors activation in human umbilical vein endothelium. PLoS One 7:e41705

    Article  PubMed Central  PubMed  Google Scholar 

  7. Read MA, Boura AL, Walters WA (1993) Vascular actions of purines in the foetal circulation of the human placenta. Br J Pharmacol 110:454–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Westermeier F, Salomón C, Farías M, Arroyo P, Fuenzalida B, Sáez T, Salsoso R, Sanhueza C, Guzmán-Gutiérrez E, Pardo F, Leiva A, Sobrevia L (2015) Insulin requires normal expression and signalling of insulin receptor A to reverse gestational diabetes-reduced adenosine transport in human umbilical vein endothelium. FASEB J 29:37–49

    Article  CAS  PubMed  Google Scholar 

  9. Eltzschig HK (2009) Adenosine: an old drug newly discovered. Anesthesiology 111:904–915

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Fredholm BB (2014) Adenosine—a physiological or pathophysiological agent? J Mol Med (Berl) 92:201–206

    Article  CAS  Google Scholar 

  11. Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G (2015) Adenosine signalling in diabetes mellitus—pathophysiology and therapeutic considerations. Nat Rev Endocrinol 11:228–241

    CAS  PubMed  Google Scholar 

  12. Westermeier F, Salomón C, González M, Puebla C, Guzmán-Gutiérrez E, Cifuentes F, Leiva A, Casanello P, Sobrevia L (2011) Insulin restores gestational diabetes mellitus-reduced adenosine transport involving differential expression of insulin receptor isoforms in human umbilical vein endothelium. Diabetes 60:1677–1687

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Maguire MH, Szabó I, Valkó IE, Finley BE, Bennett TL (1998) Simultaneous measurement of adenosine and hypoxanthine in human umbilical cord plasma using reversed-phase high-performance liquid chromatography with photodiode-array detection and on-line validation of peak purity. J Chromatogr B Biomed Sci Appl 707:33–41

    Article  CAS  PubMed  Google Scholar 

  14. Devés R, Boyd CA (1998) Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 78:487–545

    PubMed  Google Scholar 

  15. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    Article  CAS  PubMed  Google Scholar 

  16. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  17. Wang YH, Wu HH, Ding H, Li Y, Wang ZH, Li F, Zhang JP (2013) Changes of insulin resistance and β-cell function in women with gestational diabetes mellitus and normal pregnant women during mid- and late pregnant period: a case–control study. J Obstet Gynaecol Res 39:647–652

    Article  PubMed  Google Scholar 

  18. González M, Gallardo V, Rodríguez N, Salomón C, Westermeier F, Guzmán-Gutiérrez E, Abarzúa F, Leiva A, Casanello P, Sobrevia L (2011) Insulin-stimulated L-arginine transport requires SLC7A1 gene expression and is associated with human umbilical vein relaxation. J Cell Physiol 262:2916–2924

    Article  Google Scholar 

  19. Chin-Dusting JP, Willems L, Kaye DM (2007) L-arginine transporters in cardiovascular disease: a novel therapeutic target. Pharmacol Ther 116:428–436

    Article  CAS  PubMed  Google Scholar 

  20. Rajapakse NW, Johnston T, Kiriazis H, Chin-Dusting J, Du XJ, Kaye DM (2015) Augmented endothelial L-arginine transport ameliorates pressure overload induced cardiac hypertrophy. Exp Physiol. doi:10.1113/EP085250

    PubMed  Google Scholar 

  21. Closs EI, Scheld JS, Sharafi M, Förstermann U (2000) Substrate supply for nitric-oxide synthase in macrophages and endothelial cells: role of cationic amino acid transporters. Mol Pharmacol 57:68–74

    CAS  PubMed  Google Scholar 

  22. Salomón C, Westermeier F, Puebla C, Arroyo P, Guzmán-Gutiérrez E, Pardo F, Leiva A, Casanello P, Sobrevia L (2012) Gestational diabetes reduces adenosine transport in human placental microvascular endothelium, an effect reversed by insulin. PLoS One 7:e40578

    Article  PubMed Central  PubMed  Google Scholar 

  23. Simmons WW, Closs EI, Cunningham JM, Smith TW, Kelly RA (1996) Cytokines and insulin induce cationic amino acid transporter (CAT) expression in cardiac myocytes. Regulation of L-arginine transport and no production by CAT-1, CAT-2A, and CAT-2B. J Biol Chem 271:11694–11702

    Article  CAS  PubMed  Google Scholar 

  24. Ethier MF, Chander V, Dobson JG Jr (1993) Adenosine stimulates proliferation of human endothelial cells in culture. Am J Physiol 265:H131–H138

    CAS  PubMed  Google Scholar 

  25. Yoneyama Y, Suzuki S, Sawa R, Yoneyama K, Power GG, Araki T (2002) Increased plasma adenosine concentrations and the severity of preeclampsia. Obstet Gynecol 100:1266–1270

    Article  CAS  PubMed  Google Scholar 

  26. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacol Rev 63:1–34

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Huang CC, Chiribau CB, Majumder M, Chiang CM, Wek RC, Kelm RJ Jr, Khalili K, Snider MD, Hatzoglou M (2009) A bifunctional intronic element regulates the expression of the arginine/lysine transporter Cat-1 via mechanisms involving the purine-rich element binding protein A (Pur alpha). J Biol Chem 284:32312–32320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Wang Q, Huang R, Yu B, Cao F, Wang H, Zhang M, Wang X, Zhang B, Zhou H, Zhu Z (2013) Higher fetal insulin resistance in Chinese pregnant women with gestational diabetes mellitus and correlation with maternal insulin resistance. PLoS One 8:e59845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Norman RJ, Wang JX, Hague W (2004) Should we continue or stop insulin sensitizing drugs during pregnancy? Curr Opin Obstet Gynecol 16:245–250

    Article  PubMed  Google Scholar 

  30. Verier-Mine O (2010) Outcomes in women with a history of gestational diabetes. Screening and prevention of type 2 diabetes. Literature review. Diabetes Metab 36:595–616

    Article  CAS  PubMed  Google Scholar 

  31. Löbner K, Knopff A, Baumgarten A, Mollenhauer U, Marienfeld S, Garrido-Franco M, Bonifacio E, Ziegler AG (2006) Predictors of postpartum diabetes in women with gestational diabetes mellitus. Diabetes 55:792–797

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Mrs Amparo Pacheco and Mrs Ninoska Muñoz from CMPL, Pontificia Universidad Católica de Chile, for excellent technical and secretarial assistance, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Sobrevia.

Ethics declarations

Funding

This works was supported by Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT 1150377, 1150344, and 11150083), Chile.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guzmán-Gutiérrez, E., Armella, A., Toledo, F. et al. Insulin requires A1 adenosine receptors expression to reverse gestational diabetes-increased L-arginine transport in human umbilical vein endothelium. Purinergic Signalling 12, 175–190 (2016). https://doi.org/10.1007/s11302-015-9491-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9491-2

Keywords

Navigation