Skip to main content

Advertisement

Log in

Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Hollmann M, Heinemann S (1994) Cloned glutamate receptors. Annu Rev Neurosci 17:31–108

    Article  PubMed  CAS  Google Scholar 

  2. Collingridge GL, Bliss TV (1995) Memories of NMDA receptors and LTP. Trends Neurosci 18:54–56

    Article  PubMed  CAS  Google Scholar 

  3. Nicoletti F, Bockaert J, Collingridge GL, Conn PJ, Ferraguti F, Schoepp DD, Wroblewski JT, Pin JP (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  4. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  5. Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158:137–148

    Article  PubMed  CAS  Google Scholar 

  6. Hunt DL, Castillo PE (2012) Synaptic plasticity of NMDA receptors: mechanisms and functional implications. Curr Opin Neurobiol 22:496–508

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  7. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16:521–527

    Article  PubMed  CAS  Google Scholar 

  8. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309:261–263

    Article  PubMed  CAS  Google Scholar 

  9. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307:462–465

    Article  PubMed  CAS  Google Scholar 

  10. Chater TE, Goda Y (2014) The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci 8:401

    Article  PubMed Central  PubMed  Google Scholar 

  11. Herring BE, Shi Y, Suh YH, Zheng CY, Blankenship SM, Roche KW, Nicoll RA (2013) Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron 77:1083–1096

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  12. Kato AS, Gill MB, Ho MT, Yu H, Tu Y, Siuda ER, Wang H, Qian YW, Nisenbaum ES, Tomita S, Bredt DS (2010) Hippocampal AMPA receptor gating controlled by both TARP and cornichon proteins. Neuron 68:1082–96

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Straub C, Tomita S (2012) The regulation of glutamate receptor trafficking and function by TARPs and other transmembrane auxiliary subunits. Curr Opin Neurobiol 22:488–495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. Henley JM, Wilkinson KA (2013) AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci 15:11–27

    PubMed Central  PubMed  Google Scholar 

  15. Benke TA, Lüthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393:793–797

    Article  PubMed  CAS  Google Scholar 

  16. Tomita S, Stein V, Stocker TJ, Nicoll RA, Bredt DS (2005) Bidirectional synaptic plasticity regulated by phosphorylation of stargazin-like TARPs. Neuron 45:269–277

    Article  PubMed  CAS  Google Scholar 

  17. Lerma J, Marques JM (2013) Kainate receptors in health and disease. Neuron 80(2):292–311

    Article  PubMed  CAS  Google Scholar 

  18. Lerma J, Paternain AV, Rodríguez-Moreno A, López-García JC (2001) Molecular physiology of kainate receptors. Physiol Rev 81:971–998

    PubMed  CAS  Google Scholar 

  19. Cunha RA, Malva JO, Ribeiro JA (1999) Kainate receptors coupled to G(i)/G(o) proteins in the rat hippocampus. Mol Pharmacol 56:429–433

    PubMed  CAS  Google Scholar 

  20. Rodríguez-Moreno A, Sihra TS (2007) Metabotropic actions of kainate receptors in the CNS. J Neurochem 103:2121–2135

    Article  PubMed  CAS  Google Scholar 

  21. Copits BA, Robbins JS, Frausto S, Swanson GT (2011) Synaptic targeting and functional modulation of GluK1 kainate receptors by the auxiliary neuropilin and tolloid-like (NETO) proteins. J Neurosci 31:7334–7340

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  22. Carta M, Opazo P, Veran J, Athané A, Choquet D, Coussen F, Mulle C (2013) CaMKII-dependent phosphorylation of GluK5 mediates plasticity of kainate receptors. EMBO J 32:496–510

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  23. Castillo PE, Malenka RC, Nicoll RA (1997) Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons. Nature 388:182–186

    Article  PubMed  CAS  Google Scholar 

  24. Frerking M, Ohliger-Frerking P (2002) AMPA receptors and kainate receptors encode different features of afferent activity. J Neurosci 22:7434–7443

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Mellor JR (2006) Synaptic plasticity of kainate receptors. Biochem Soc Trans 34:949–951

    Article  PubMed  CAS  Google Scholar 

  26. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, Tidball P, Fang G, Irvine MW, Costa BM, Monaghan DT, Bortolotto ZA, Molnár E, Lodge D, Jane DE (2013) The NMDA receptor as a target for cognitive enhancement. Neuropharmacology 64:13–26

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  27. Gladding CM, Raymond LA (2011) Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol Cell Neurosci 48(4):308–320

    Article  PubMed  CAS  Google Scholar 

  28. Lalo U, Pankratov Y, Kirchhoff F, North RA, Verkhratsky A (2006) NMDA receptors mediate neuron-to-glia signaling in mouse cortical astrocytes. J Neurosci 26:2673–2683

    Article  PubMed  CAS  Google Scholar 

  29. Parsons MP, Raymond LA (2014) Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 82:279–293

    Article  PubMed  CAS  Google Scholar 

  30. Dingledine R, Borges K, Bowie D, Traynelis SF (1999) The glutamate receptor ion channels. Pharmacol Rev 51:7–61

    PubMed  CAS  Google Scholar 

  31. Stephenson FA, Cousins SL, Kenny AV (2008) Assembly and forward trafficking of NMDA receptors. Mol Membr Biol 25:311–320

    Article  PubMed  CAS  Google Scholar 

  32. Paoletti P (2011) Molecular basis of NMDA receptor functional diversity. Eur J Neurosci 33:1351–1365

    Article  PubMed  Google Scholar 

  33. Laube B, Kuhse J, Betz H (1998) Evidence for a tetrameric structure of recombinant NMDA receptors. J Neurosci 18:2954–2961

    PubMed  CAS  Google Scholar 

  34. Cavara NA, Hollmann M (2008) Shuffling the deck anew: how NR3 tweaks NMDA receptor function. Mol Neurobiol 38:16–26

    Article  PubMed  CAS  Google Scholar 

  35. Henson MA, Roberts AC, Pérez-Otaño I, Philpot BD (2010) Influence of the NR3A subunit on NMDA receptor functions. Prog Neurobiol 91:23–37

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Charton JP, Herkert M, Becker CM, Schröder H (1999) Cellular and subcellular localization of the 2B-subunit of the NMDA receptor in the adult rat telencephalon. Brain Res 816:609–617

    Article  PubMed  CAS  Google Scholar 

  37. Tovar KR, Westbrook GL (1999) The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J Neurosci 19:4180–4188

    PubMed  CAS  Google Scholar 

  38. Harris AZ, Pettit DL (2007) Extrasynaptic and synaptic NMDA receptors form stable and uniform pools in rat hippocampal slices. J Physiol 584:509–519

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  39. Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95(3):1727–1734

    Article  PubMed  CAS  Google Scholar 

  40. Mayer ML, Armstrong N (2004) Structure and function of glutamate receptor ion channels. Annu Rev Physiol 66:161–181

    Article  PubMed  CAS  Google Scholar 

  41. Chen BS, Roche KW (2007) Regulation of NMDA receptors by phosphorylation. Neuropharmacology 53:362–368

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  42. Chen L, Huang LY (1992) Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521–523

    Article  PubMed  CAS  Google Scholar 

  43. Lan JY, Skeberdis VA, Jover T, Grooms SY, Lin Y, Araneda RC, Zheng X, Bennett MV, Zukin RS (2001) Protein kinase C modulates NMDA receptor trafficking and gating. Nat Neurosci 4:382–390

    Article  PubMed  CAS  Google Scholar 

  44. Raman IM, Tong G, Jahr CE (1996) Beta-adrenergic regulation of synaptic NMDA receptors by cAMP-dependent protein kinase. Neuron 16:415–421

    Article  PubMed  CAS  Google Scholar 

  45. Rebola N, Srikumar BN, Mulle C (2010) Activity-dependent synaptic plasticity of NMDA receptors. J Physiol 588:93–99

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Salter MW, Kalia LV (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5:317–328

    Article  PubMed  CAS  Google Scholar 

  47. Hayashi T, Thomas GM, Huganir RL (2009) Dual palmitoylation of NR2 subunits regulates NMDA receptor trafficking. Neuron 64:213–226

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  48. Chung HJ, Huang YH, Lau LF, Huganir RL (2004) Regulation of the NMDA receptor complex and trafficking by activity-dependent phosphorylation of the NR2B subunit PDZ ligand. J Neurosci 24:10248–10259

    Article  PubMed  CAS  Google Scholar 

  49. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Article  PubMed  CAS  Google Scholar 

  50. McGee AW, Bredt DS (2003) Assembly and plasticity of the glutamatergic postsynaptic specialization. Curr Opin Neurobiol 13:111–118

    Article  PubMed  CAS  Google Scholar 

  51. Roche KW, Standley S, McCallum J, Dune Ly C, Ehlers MD, Wenthold RJ (2001) Molecular determinants of NMDA receptor internalization. Nat Neurosci 4:794–802

    Article  PubMed  CAS  Google Scholar 

  52. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325:529–531

    Article  PubMed  CAS  Google Scholar 

  53. Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39

    Article  PubMed  CAS  Google Scholar 

  54. Lipton SA, Rosenberg PA (1994) Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 330:613–622

    Article  PubMed  CAS  Google Scholar 

  55. Chatterton JE, Awobuluyi M, Premkumar LS, Takahashi H, Talantova M, Shin Y, Cui J, Tu S, Sevarino KA, Nakanishi N, Tong G, Lipton SA, Zhang D (2002) Excitatory glycine receptors containing the NR3 family of NMDA receptor subunits. Nature 415:793–798

    Article  PubMed  CAS  Google Scholar 

  56. Papouin T, Ladépêche L, Ruel J, Sacchi S, Labasque M, Hanini M, Groc L, Pollegioni L, Mothet JP, Oliet SH (2012) Synaptic and extrasynaptic NMDA receptors are gated by different endogenous coagonists. Cell 150:633–646

    Article  PubMed  CAS  Google Scholar 

  57. Hood WF, Compton RP, Monahan JB (1989) D-cycloserine: a ligand for the N-methyl-D-aspartate coupled glycine receptor has partial agonist characteristics. Neurosci Lett 98:91–95

    Article  PubMed  CAS  Google Scholar 

  58. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44:851–859

    PubMed  CAS  Google Scholar 

  59. Williams K (1994) Mechanisms influencing stimulatory effects of spermine at recombinant N-methyl-D-aspartate receptors. Mol Pharmacol 46:161–168

    PubMed  CAS  Google Scholar 

  60. Monaghan DT, Irvine MW, Costa BM, Fang G, Jane DE (2012) Pharmacological modulation of NMDA receptor activity and the advent of negative and positive allosteric modulators. Neurochem Int 61:581–592

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Vyklicky V, Korinek M, Smejkalova T, Balik A, Krausova B, Kaniakova M, Lichnerova K, Cerny J, Krusek J, Dittert I, Horak M, Vyklicky L (2014) Structure, function, and pharmacology of NMDA receptor channels. Physiol Res 63(Suppl 1):S191–203

    PubMed  CAS  Google Scholar 

  62. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23

    Article  PubMed  CAS  Google Scholar 

  63. Lüscher C, Nicoll RA, Malenka RC, Muller D (2000) Synaptic plasticity and dynamic modulation of the postsynaptic membrane. Nat Neurosci 3:545–550

    Article  PubMed  Google Scholar 

  64. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  65. Izumi Y, Tokuda K, Zorumski CF (2008) Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide, and p38 mitogen-activated protein kinase. Hippocampus 18:258–265

    Article  PubMed  CAS  Google Scholar 

  66. Liu DD, Yang Q, Li ST (2013) Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 93:10–16

    Article  PubMed  CAS  Google Scholar 

  67. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  PubMed  CAS  Google Scholar 

  68. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828

    Article  PubMed  CAS  Google Scholar 

  69. Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM, Wang YT (2007) NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 27:2846–2857

    Article  PubMed  CAS  Google Scholar 

  70. Zhang XM, Luo JH (2013) GluN2A versus GluN2B: twins, but quite different. Neurosci Bull 29(6):761–772

    Article  PubMed  CAS  Google Scholar 

  71. Wroge CM, Hogins J, Eisenman L, Mennerick S (2012) Synaptic NMDA receptors mediate hypoxic excitotoxic death. J Neurosci 32:6732–6742

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Tovar KR, Westbrook GL (2002) Mobile NMDA receptors at hippocampal synapses. Neuron 34:255–264

    Article  PubMed  CAS  Google Scholar 

  73. Verkhratsky A, Butt A (2007) Glial neurobiology. A textbook. Wiley, Chichester

    Book  Google Scholar 

  74. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  PubMed  CAS  Google Scholar 

  75. Perea G, Sur M, Araque A (2014) Neuron-glia networks: integral gear of brain function. Front Cell Neurosci 8:378

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  76. Imura Y, Morizawa Y, Komatsu R, Shibata K, Shinozaki Y, Kasai H, Moriishi K, Moriyama Y, Koizumi S (2013) Microglia release ATP by exocytosis. Glia 61(8):1320–1330

    Article  PubMed  Google Scholar 

  77. Parpura V, Zorec R (2010) Gliotransmission: exocytotic release from astrocytes. Brain Res Rev 63(1–2):83–92

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Machado-Vieira R, Manji HK, Zarate CA (2009) The role of the tripartite glutamatergic synapse in the pathophysiology and therapeutics of mood disorders. Neuroscientist 15:525–539

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  79. Martineau M (2013) Gliotransmission: focus on exocytotic release of L-glutamate and D-serine from astrocytes. Biochem Soc Trans 41:1557–1561

    Article  PubMed  CAS  Google Scholar 

  80. Soriano FX, Hardingham GE (2007) Compartmentalized NMDA receptor signalling to survival and death. J Physiol 584:381–387

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Schafer DP, Lehrman EK, Stevens B (2013) The “quad-partite” synapse: microglia-synapse interactions in the developing and mature CNS. Glia 61(1):24–36

    Article  PubMed Central  PubMed  Google Scholar 

  82. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, Giustetto M, Ferreira TA, Guiducci E, Dumas L, Ragozzino D, Gross CT (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333(6048):1456–1458

    Article  PubMed  CAS  Google Scholar 

  83. Pascual O, Ben Achour S, Rostaing P, Triller A, Bessis A (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci U S A 109(4):E197–205

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Dissing-Olesen L, LeDue JM, Rungta RL, Hefendehl JK, Choi HB, MacVicar BA (2014) Activation of neuronal NMDA receptors triggers transient ATP-mediated microglial process outgrowth. J Neurosci 34(32):10511–10527

    Article  PubMed  CAS  Google Scholar 

  85. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul JY, Takano H, Moss SJ, McCarthy K, Haydon PG (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310(5745):113–116

    Article  PubMed  CAS  Google Scholar 

  86. Nedergaard M, Verkhratsky A (2012) Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60(7):1013–1023

    Article  PubMed Central  PubMed  Google Scholar 

  87. Sloan SA, Barres BA (2014) Looks can be deceiving: reconsidering the evidence for gliotransmission. Neuron 84(6):1112–1115

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  88. Butt AM (2011) ATP: a ubiquitous gliotransmitter integrating neuron-glial networks. Semin Cell Dev Biol 22:205–213

    Article  PubMed  CAS  Google Scholar 

  89. Franke H, Illes P (2014) Nucleotide signaling in astrogliosis. Neurosci Lett 565:14–22

    Article  PubMed  CAS  Google Scholar 

  90. Köles L, Leichsenring A, Rubini P, Illes P (2011) P2 receptor signaling in neurons and glial cells of the central nervous system. Adv Pharmacol 61:441–493

    Article  PubMed  CAS  Google Scholar 

  91. Korinek M, Kapras V, Vyklicky V, Adamusova E, Borovska J, Vales K, Stuchlik A, Horak M, Chodounska H, Vyklicky L Jr (2011) Neurosteroid modulation of N-methyl-D-aspartate receptors: molecular mechanism and behavioral effects. Steroids 76:1409–1418

    Article  PubMed  CAS  Google Scholar 

  92. Harsing LG Jr, Matyus P (2013) Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 93:110–119

    Article  PubMed  CAS  Google Scholar 

  93. Nong Y, Huang YQ, Ju W, Kalia LV, Ahmadian G, Wang YT, Salter MW (2003) Glycine binding primes NMDA receptor internalization. Nature 422:302–307

    Article  PubMed  CAS  Google Scholar 

  94. Köles L, Wirkner K, Illes P (2001) Modulation of ionotropic glutamate receptor channels. Neurochem Res 26:925–932

    Article  PubMed  Google Scholar 

  95. Nong Y, Huang YQ, Salter MW (2004) NMDA receptors are movin’ in. Curr Opin Neurobiol 14:353–361

    Article  PubMed  CAS  Google Scholar 

  96. Aniksztejn L, Bregestovski P, Ben-Ari Y (1991) Selective activation of quisqualate metabotropic receptor potentiates NMDA but not AMPA responses. Eur J Pharmacol 205:327–328

    Article  PubMed  CAS  Google Scholar 

  97. Benquet P, Gee CE, Gerber U (2002) Two distinct signaling pathways upregulate NMDA receptor responses via two distinct metabotropic glutamate receptor subtypes. J Neurosci 22:9679–9686

    PubMed  CAS  Google Scholar 

  98. Bleakman D, Rusin KI, Chard PS, Glaum SR, Miller RJ (1992) Metabotropic glutamate receptors potentiate ionotropic glutamate responses in the rat dorsal horn. Mol Pharmacol 42:192–196

    PubMed  CAS  Google Scholar 

  99. Harvey J, Collingridge GL (1993) Signal transduction pathways involved in the acute potentiation of NMDA responses by 1S,3R-ACPD in rat hippocampal slices. Br J Pharmacol 109:1085–1090

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Doherty AJ, Palmer MJ, Henley JM, Collingridge GL, Jane DE (1997) (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) activates mGlu5, but no mGlu1, receptors expressed in CHO cells and potentiates NMDA responses in the hippocampus. Neuropharmacology 36:265–267

    Article  PubMed  CAS  Google Scholar 

  101. Heidinger V, Manzerra P, Wang XQ, Strasser U, Yu SP, Choi DW, Behrens MM (2002) Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J Neurosci 22:5452–5461

    PubMed  CAS  Google Scholar 

  102. Kelso SR, Nelson TE, Leonard JP (1992) Protein kinase C-mediated enhancement of NMDA currents by metabotropic glutamate receptors in Xenopus oocytes. J Physiol 449:705–718

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  103. Skeberdis VA, Lan J, Opitz T, Zheng X, Bennett MV, Zukin RS (2001) mGluR1-mediated potentiation of NMDA receptors involves a rise in intracellular calcium and activation of protein kinase C. Neuropharmacology 40:856–865

    Article  PubMed  CAS  Google Scholar 

  104. Oliveira JF, Krügel U, Köles L, Illes P, Wirkner K (2008) Blockade of glutamate transporters leads to potentiation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex via group II metabotropic glutamate receptor activation. Neuropharmacology 55:447–453

    Article  PubMed  CAS  Google Scholar 

  105. Wirkner K, Günther A, Weber M, Guzman SJ, Krause T, Fuchs J, Köles L, Nörenberg W, Illes P (2007) Modulation of NMDA receptor current in layer V pyramidal neurons of the rat prefrontal cortex by P2Y receptor activation. Cereb Cortex 17:621–631

    Article  PubMed  Google Scholar 

  106. Yu SP, Sensi SL, Canzoniero LM, Buisson A, Choi DW (1997) Membrane-delimited modulation of NMDA currents by metabotropic glutamate receptor subtypes 1/5 in cultured mouse cortical neurons. J Physiol 499:721–732

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Snyder EM, Philpot BD, Huber KM, Dong X, Fallon JR, Bear MF (2001) Internalization of ionotropic glutamate receptors in response to mGluR activation. Nat Neurosci 4:1079–1085

    Article  PubMed  CAS  Google Scholar 

  108. Wang XF, Daw NW, Jin X (1998) The effect of ACPD on the responses to NMDA and AMPA varies with layer in slices of rat visual cortex. Brain Res 812:186–192

    Article  PubMed  CAS  Google Scholar 

  109. Zhong J, Gerber G, Kojić L, Randić M (2000) Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn. Brain Res 887:359–377

    Article  PubMed  CAS  Google Scholar 

  110. Cepeda C, André VM, Jocoy EL, Levine MS (2009) NMDA and dopamine: diverse mechanisms applied to interacting receptor systems. In: Van Dongen AM (ed) Biology of the NMDA receptor. CRC, Boca Raton, Chapter 3

    Google Scholar 

  111. Cepeda C, Hurst RS, Altemus KL, Flores-Hernández J, Calvert CR, Jokel ES, Grandy DK, Low MJ, Rubinstein M, Ariano MA, Levine MS (2001) Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 85:659–870

    PubMed  CAS  Google Scholar 

  112. Maura G, Giardi A, Raiteri M (1988) Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals. J Pharmacol Exp Ther 247:680–684

    PubMed  CAS  Google Scholar 

  113. Nicola SM, Malenka RC (1997) Dopamine depresses excitatory and inhibitory synaptic transmission by distinct mechanisms in the nucleus accumbens. J Neurosci 17:5697–5710

    PubMed  CAS  Google Scholar 

  114. Zhang L, Bose P, Warren RA (2014) Dopamine preferentially inhibits NMDA receptor-mediated EPSCs by acting on presynaptic D1 receptors in nucleus accumbens during postnatal development. PLoS One 9:e86970

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Cepeda C, Buchwald NA, Levine MS (1993) Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci U S A 90:9576–9580

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  116. Wirkner K, Krause T, Köles L, Thümmler S, Al-Khrasani M, Illes P (2004) D1 but not D2 dopamine receptors or adrenoceptors mediate dopamine-induced potentiation of N-methyl-d-aspartate currents in the rat prefrontal cortex. Neurosci Lett 372:89–93

    Article  PubMed  CAS  Google Scholar 

  117. Zheng P, Zhang XX, Bunney BS, Shi WX (1999) Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 91:27–535

    Article  Google Scholar 

  118. Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA (1992) Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11:330–341

    Article  PubMed  CAS  Google Scholar 

  119. Chergui K, Lacey MG (1999) Modulation by dopamine D1-like receptors of synaptic transmission and NMDARs in rat nucleus accumbens is attenuated by the protein kinase C inhibitor Ro 32-0432. Neuropharmacology 38:223–231

    Article  PubMed  CAS  Google Scholar 

  120. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS (1998) Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 79:82–94

    PubMed  CAS  Google Scholar 

  121. Snyder GL, Fienberg AA, Huganir RL, Greengard P (1998) A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 18:10297–10303

    PubMed  CAS  Google Scholar 

  122. Tseng KY, O’Donnell P (2004) Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 24:5131–5139

    Article  PubMed  CAS  Google Scholar 

  123. Sarantis K, Matsokis N, Angelatou F (2009) Synergistic interactions of dopamine D1 and glutamate NMDA receptors in rat hippocampus and prefrontal cortex: involvement of ERK1/2 signaling. Neuroscience 163:1135–1145

    Article  PubMed  CAS  Google Scholar 

  124. Yang K, Trepanier C, Sidhu B, Xie YF, Li H, Lei G, Salter MW, Orser BA, Nakazawa T, Yamamoto T, Jackson MF, Macdonald JF (2012) Metaplasticity gated through differential regulation of GluN2A versus GluN2B receptors by Src family kinases. EMBO J 31:805–816

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  125. Chen G, Greengard P, Yan Z (2004) Potentiation of NMDAR currents by dopamine D receptors in prefrontal cortex. Proc Natl Acad Sci U S A 101:2596–2600

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  126. Jocoy EL, André VM, Cummings DM, Rao SP, Wu N, Ramsey AJ, Caron MG, Cepeda C, Levine MS (2011) Dissecting the contribution of individual receptor subunits to the enhancement of N-methyl-d-aspartate currents by dopamine D1 receptor activation in striatum. Front Syst Neurosci 5:28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Hernandez-Lopez S, Tkatch T, Perez-Garci E, Galarraga E, Bargas J, Hamm H, Surmeier DJ (2000) D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[β]1-IP3-calcineurin-signaling cascade. J Neurosci 20:8987–8995

    PubMed  CAS  Google Scholar 

  128. Lee FJ, Xue S, Pei L, Vukusic B, Chéry N, Wang Y, Wang YT, Niznik HB, Yu XM, Liu F (2002) Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 111:219–230

    Article  PubMed  CAS  Google Scholar 

  129. Liu XY, Chu XP, Mao LM, Wang M, Lan HX, Li MH, Zhang GC, Parelkar NK, Fibuch EE, Haines M, Neve KA, Liu F, Xiong ZG, Wang JQ (2006) Modulation of D2R-NR2B interactions in response to cocaine. Neuron 52:897–909

    Article  PubMed  CAS  Google Scholar 

  130. Dunah AW, Standaert DG (2001) Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 21:5546–5558

    PubMed  CAS  Google Scholar 

  131. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW (2006) Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 26:4690–4700

    Article  PubMed  CAS  Google Scholar 

  132. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C (2003) Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 278:20196–20202

    Article  PubMed  CAS  Google Scholar 

  133. Ladepeche L, Dupuis JP, Bouchet D, Doudnikoff E, Yang L, Campagne Y, Bézard E, Hosy E, Groc L (2013) Single-molecule imaging of the functional crosstalk between surface NMDA and dopamine D1 receptors. Proc Natl Acad Sci U S A 110:18005–18010

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Ladepeche L, Yang L, Bouchet D, Groc L (2013) Regulation of dopamine D1 receptor dynamics within the postsynaptic density of hippocampal glutamate synapses. PLoS One 8:e74512

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  135. Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492:479–493

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Fernández de Sevilla D, Buño W (2010) The muscarinic long-term enhancement of NMDA and AMPA receptor-mediated transmission at Schaffer collateral synapses develop through different intracellular mechanisms. J Neurosci 30:11032–11042

    Article  PubMed  CAS  Google Scholar 

  137. Harvey J, Balasubramaniam R, Collingridge GL (1993) Carbachol can potentiate N-methyl-D-aspartate responses in the rat hippocampus by a staurosporine and thapsigargin-insensitive mechanism. Neurosci Lett 162:165–168

    Article  PubMed  CAS  Google Scholar 

  138. Marino MJ, Rouse ST, Levey AI, Potter LT, Conn PJ (1998) Activation of the genetically defined m1 muscarinic receptor potentiates N-methyl-D-aspartate (NMDA) receptor currents in hippocampal pyramidal cells. Proc Natl Acad Sci U S A 95:11465–11470

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  139. Markram H, Segal M (1992) The inositol 1,4,5-trisphosphate pathway mediates cholinergic potentiation of rat hippocampal neuronal responses to NMDA. J Physiol 447:513–533

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  140. Jo J, Son GH, Winters BL, Kim MJ, Whitcomb DJ, Dickinson BA, Lee YB, Futai K, Amici M, Sheng M, Collingridge GL, Cho K (2010) Muscarinic receptors induce LTD of NMDAR EPSCs via a mechanism involving hippocalcin, AP2 and PSD-95. Nat Neurosci 13:1216–1224

    Article  PubMed  CAS  Google Scholar 

  141. Kirkwood A, Rozas C, Kirkwood J, Perez F, Bear MF (1999) Modulation of long-term synaptic depression in visual cortex by acetylcholine and norepinephrine. J Neurosci 19:1599–1609

    PubMed  CAS  Google Scholar 

  142. McGehee DS, Heath MJ, Gelber S, Devay P, Role LW (1995) Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science 269:1692–1696

    Article  PubMed  CAS  Google Scholar 

  143. Rodrigues RJ, Almeida T, de Mendonça A, Cunha RA (2006) Interaction between P2X and nicotinic acetylcholine receptors in glutamate nerve terminals of the rat hippocampus. J Mol Neurosci 30:173–176

    Article  PubMed  CAS  Google Scholar 

  144. Vizi ES, Lendvai B (1999) Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Brain Res Rev 30:219–235

    Article  PubMed  CAS  Google Scholar 

  145. Chéramy A, Godeheu G, L’Hirondel M, Glowinski J (1996) Cooperative contributions of cholinergic and NMDA receptors in the presynaptic control of dopamine release from synaptosomes of the rat striatum. J Pharmacol Exp Ther 276:616–625

    PubMed  Google Scholar 

  146. Risso F, Grilli M, Parodi M, Bado M, Raiteri M, Marchi M (2004) Nicotine exerts a permissive role on NMDA receptor function in hippocampal noradrenergic terminals. Neuropharmacology 47:65–71

    Article  PubMed  CAS  Google Scholar 

  147. Salamone A, Zappettini S, Grilli M, Olivero G, Agostinho P, Tomé AR, Chen J, Pittaluga A, Cunha RA, Marchi M (2014) Prolonged nicotine exposure down-regulates presynaptic NMDA receptors in dopaminergic terminals of the rat nucleus accumbens. Neuropharmacology 79:488–497

    Article  PubMed  CAS  Google Scholar 

  148. Zappettini S, Grilli M, Olivero G, Chen J, Padolecchia C, Pittaluga A, Tomé AR, Cunha RA, Marchi M (2014) Nicotinic α7 receptor activation selectively potentiates the function of NMDA receptors in glutamatergic terminals of the nucleus accumbens. Front Cell Neurosci 8:332

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  149. Park-Chung M, Wu FS, Farb DH (1994) 3-α-Hydroxy-5 beta-pregnan-20-one sulfate: a negative modulator of the NMDA-induced current in cultured neurons. Mol Pharmacol 46:146–150

    PubMed  CAS  Google Scholar 

  150. Petrovic M, Sedlacek M, Horak M, Chodounska H, Vyklicky L Jr (2005) 20-Oxo-5-β-pregnan-3alpha-yl sulfate is a use-dependent NMDA receptor inhibitor. J Neurosci 25:8439–8450

    Article  PubMed  CAS  Google Scholar 

  151. Park-Chung M, Wu FS, Purdy RH, Malayev AA, Gibbs TT, Farb DH (1997) Distinct sites for inverse modulation of N-methyl-D-aspartate receptors by sulphated steroids. Mol Pharmacol 52:1113–1123

    PubMed  CAS  Google Scholar 

  152. Yaghoubi N, Malayev A, Russek SJ, Gibbs TT, Farb DH (1998) Neurosteroid modulation of recombinant ionotropic glutamate receptors. Brain Res 803:153–160

    Article  PubMed  CAS  Google Scholar 

  153. Horak M, Vlcek K, Petrovic M, Chodounska H, Vyklicky L Jr (2004) Molecular mechanism of pregnenolone sulfate action at NR1/NR2B receptors. J Neurosci 24:10318–10325

    Article  PubMed  CAS  Google Scholar 

  154. Chen L, Sokabe M (2005) Presynaptic modulation of synaptic transmission by pregnenolone sulfate as studied by optical recordings. J Neurophysiol 94:4131–4144

    Article  PubMed  CAS  Google Scholar 

  155. Partridge LD, Valenzuela CF (2001) Neurosteroid-induced enhancement of glutamate transmission in rat hippocampal slices. Neurosci Lett 301:103–106

    Article  PubMed  CAS  Google Scholar 

  156. Horak M, Vlcek K, Chodounska H, Vyklicky L Jr (2006) Subtype-dependence of N-methyl-D-aspartate receptor modulation by pregnenolone sulfate. Neuroscience 37:93–102

    Article  CAS  Google Scholar 

  157. Chen L, Miyamoto Y, Furuya K, Dai XN, Mori N, Sokabe M (2006) Chronic DHEAS administration facilitates hippocampal long-term potentiation via an amplification of Src-dependent NMDA receptor signaling. Neuropharmacology 51:659–670

    Article  PubMed  CAS  Google Scholar 

  158. Randall RD, Lee SY, Meyer JH, Wittenberg GF, Gruol DL (1995) Acute alcohol blocks neurosteroid modulation of synaptic transmission and long-term potentiation in the rat hippocampal slice. Brain Res 701:238–248

    Article  PubMed  CAS  Google Scholar 

  159. Tanaka M, Sokabe M (2012) Continuous de novo synthesis of neurosteroids is required for normal synaptic transmission and plasticity in the dentate gyrus of the rat hippocampus. Neuropharmacology 62:2373–87

    Article  PubMed  CAS  Google Scholar 

  160. Khakh BS, Henderson G (2000) Modulation of fast synaptic transmission by presynaptic ligand-gated cation channels. J Auton Nerv Syst 81:110–121

    Article  PubMed  CAS  Google Scholar 

  161. Melis M, Pistis M, Perra S, Muntoni AL, Pillolla G, Gessa GL (2004) Endocannabinoids mediate presynaptic inhibition of glutamatergic transmission in rat ventral tegmental area dopamine neurons through activation of CB1 receptors. J Neurosci 24:53–62

    Article  PubMed  CAS  Google Scholar 

  162. Wang SJ (2005) Activation of neuropeptide Y Y1 receptors inhibits glutamate release through reduction of voltage-dependent Ca2+ entry in the rat cerebral cortex nerve terminals: suppression of this inhibitory effect by the protein kinase C-dependent facilitatory pathway. Neuroscience 134:987–1000

    Article  PubMed  CAS  Google Scholar 

  163. Yang TT, Hung CF, Lee YJ, Su MJ, Wang SJ (2004) Morphine inhibits glutamate exocytosis from rat cerebral cortex nerve terminals (synaptosomes) by reducing Ca2+ influx. Synapse 51:83–90

    Article  PubMed  CAS  Google Scholar 

  164. Marcoli M, Cervetto C, Paluzzi P, Guarnieri S, Raiteri M, Maura G (2006) Nitric oxide-evoked glutamate release and cGMP production in cerebellar slices: control by presynaptic 5-HT1D receptors. Neurochem Int 49:12–19

    Article  PubMed  CAS  Google Scholar 

  165. Antonelli T, Fuxe K, Tomasini MC, Mazzoni E, Agnati LF, Tanganelli S, Ferraro L (2007) Neurotensin receptor mechanisms and its modulation of glutamate transmission in the brain: relevance for neurodegenerative diseases and their treatment. Prog Neurobiol 83:92–109

    Article  PubMed  CAS  Google Scholar 

  166. Luo F, Li SH, Tang H, Deng WK, Zhang Y, Liu Y (2015) Phenylephrine enhances glutamate release in the medial prefrontal cortex through interaction with N-type Ca2+ channels and release machinery. J Neurochem 132:38–50

    Article  PubMed  CAS  Google Scholar 

  167. Ji XH, Cao XH, Zhang CL, Feng ZJ, Zhang XH, Ma L, Li BM (2008) Pre- and postsynaptic beta-adrenergic activation enhances excitatory synaptic transmission in layer V/VI pyramidal neurons of the medial prefrontal cortex of rats. Cereb Cortex 18:1506–1520

    Article  PubMed  Google Scholar 

  168. Kobayashi M, Kojima M, Koyanagi Y, Adachi K, Imamura K, Koshikawa N (2009) Presynaptic and postsynaptic modulation of glutamatergic synaptic transmission by activation of alpha(1)- and beta-adrenoceptors in layer V pyramidal neurons of rat cerebral cortex. Synapse 63:269–281

    Article  PubMed  CAS  Google Scholar 

  169. Liu W, Yuen EY, Allen PB, Feng J, Greengard P, Yan Z (2006) Adrenergic modulation of NMDA receptors in prefrontal cortex is differentially regulated by RGS proteins and spinophilin. Proc Natl Acad Sci U S A 103:18338–18343

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  170. Luo F, Tang H, Li BM, Li SH (2014) Activation of α1-adrenoceptors enhances excitatory synaptic transmission via a pre- and postsynaptic protein kinase C-dependent mechanism in the medial prefrontal cortex of rats. Eur J Neurosci 39:1281–1293

    Article  PubMed  Google Scholar 

  171. Morrisett R, Mott D, Lewis D, Swartzwelder H, Wilson W (1991) GABAB-receptor-mediated inhibition of the N-methyl-D-aspartate component of synaptic transmission in the rat hippocampus. J Neurosci 11:203–209

    PubMed  CAS  Google Scholar 

  172. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD (2001) An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci 21:3063–3072

    PubMed  CAS  Google Scholar 

  173. Tingley WG, Roche KW, Thompson AK, Huganir RL (1993) Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain. Nature 364:70–73

    Article  PubMed  CAS  Google Scholar 

  174. Krupp JJ, Vissel B, Thomas CG, Heinemann SF, Westbrook GL (2002) Calcineurin acts via the C-terminus of NR2A to modulate desensitization of NMDA receptors. Neuropharmacology 42:593–602

    Article  PubMed  CAS  Google Scholar 

  175. Grant ER, Guttmann RP, Seifert KM, Lynch DR (2001) A region of the rat N-methyl-D-aspartate receptor 2A subunit that is sufficient for potentiation by phorbol esters. Neurosci Lett 310:9–12

    Article  PubMed  CAS  Google Scholar 

  176. Zheng F, Gingrich MB, Traynelis SF, Conn PJ (1998) Tyrosine kinase potentiates NMDA receptor currents by reducing tonic zinc inhibition. Nat Neurosci 1:185–191

    Article  PubMed  CAS  Google Scholar 

  177. Liao GY, Wagner DA, Hsu MH, Leonard JP (2001) Evidence for direct protein kinase-C mediated modulation of N-methyl-D-aspartate receptor current. Mol Pharmacol 59:960–964

    PubMed  CAS  Google Scholar 

  178. Murphy JA, Stein IS, Lau CG, Peixoto RT, Aman TK, Kaneko N, Aromolaran K, Saulnier JL, Popescu GK, Sabatini BL, Hell JW, Zukin RS (2014) Phosphorylation of Ser1166 on GluN2B by PKA is critical to synaptic NMDA receptor function and Ca2+ signaling in spines. J Neurosci 34:869–879

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  179. Omkumar RV, Kiely MJ, Rosenstein AJ, Min KT, Kennedy MB (1996) Identification of a phosphorylation site for calcium/calmodulin-dependent protein kinase II in the NR2B subunit of the N-methyl-D-aspartate receptor. J Biol Chem 271(49):31670–31678

    Article  PubMed  CAS  Google Scholar 

  180. Sanz-Clemente A, Matta JA, Isaac JT, Roche KW (2010) Casein kinase 2 regulates the NR2 subunit composition of synaptic NMDA receptors. Neuron 67:984–996

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Yuen EY, Jiang Q, Chen P, Gu Z, Feng J, Yan Z (2005) Serotonin 5-HT1A receptors regulate NMDA receptor channels through a microtubule-dependent mechanism. J Neurosci 25:5488–5501

    Article  PubMed  CAS  Google Scholar 

  182. Yuen EY, Jiang Q, Chen P, Feng J, Yan Z (2008) Activation of 5-HT2A/C receptors counteracts 5-HT1A regulation of n-methyl-D-aspartate receptor channels in pyramidal neurons of prefrontal cortex. J Biol Chem 283:17194–17204

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  183. Cerpa W, Ramos-Fernández E, Inestrosa NC (2014) Modulation of the NMDA receptor through secreted soluble factors. Mol Neurobiol. doi:10.1007/s12035-014-9009-x

  184. Pittaluga A, Bonfanti A, Raiteri M (2000) Somatostatin potentiates NMDA receptor function via activation of InsP(3) receptors and PKC leading to removal of the Mg2+ block without depolarization. Br J Pharmacol 130:557–566

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  185. Liu L, Brown JC 3rd, Webster WW, Morrisett RA, Monaghan DT (1995) Insulin potentiates N-methyl-D-aspartate receptor activity in Xenopus oocytes and rat hippocampus. Neurosci Lett 192:5–8

    Article  PubMed  CAS  Google Scholar 

  186. Jones ML, Leonard JP (2005) PKC site mutations reveal differential modulation by insulin of NMDA receptors containing NR2A or NR2B subunits. J Neurochem 92:1431–1438

    Article  PubMed  CAS  Google Scholar 

  187. Takasu MA, Dalva MB, Zigmond RE, Greenberg ME (2002) Modulation of NMDA receptor-dependent calcium influx and gene expression through EphB receptors. Science 295:491–495

    Article  PubMed  CAS  Google Scholar 

  188. Macdonald DS, Weerapura M, Beazely MA, Martin L, Czerwinski W, Roder JC, Orser BA, MacDonald JF (2005) Modulation of NMDA receptors by pituitary adenylate cyclase activating peptide in CA1 neurons requires Gαq, protein kinase C, and activation of Src. J Neurosci 25:11374–11384

    Article  PubMed  CAS  Google Scholar 

  189. Yaka R, He DY, Phamluong K, Ron D (2003) Pituitary adenylate cyclase-activating polypeptide (PACAP(1-38)) enhances N-methyl-D-aspartate receptor function and brain-derived neurotrophic factor expression via RACK1. J Biol Chem 278:9630–9638

    Article  PubMed  CAS  Google Scholar 

  190. Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF (2000) Potentiation of NMDA receptor function by the serine protease thrombin. J Neurosci 20:4582–4595

    PubMed  CAS  Google Scholar 

  191. Mannaioni G, Orr AG, Hamill CE, Yuan H, Pedone KH, McCoy KL, Berlinguer Palmini R, Junge CE, Lee CJ, Yepes M, Hepler JR, Traynelis SF (2008) Plasmin potentiates synaptic N-methyl-D-aspartate receptor function in hippocampal neurons through activation of protease-activated receptor-1. J Biol Chem 283:20600–20611

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  192. Wang JQ, Chu XP, Guo ML, Jin DZ, Xue B, Berry TJ, Fibuch EE, Mao LM (2012) Modulation of ionotropic glutamate receptors and Acid-sensing ion channels by nitric oxide. Front Physiol 3:164

    PubMed Central  PubMed  CAS  Google Scholar 

  193. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68:213–237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  194. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    PubMed  CAS  Google Scholar 

  195. Fields RD, Burnstock G (2006) Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 7:423–436

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  196. Franke H, Illes P (2006) Involvement of P2 receptors in the growth and survival of neurons in the CNS. Pharmacol Ther 109:297–324

    Article  PubMed  CAS  Google Scholar 

  197. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29

    Article  PubMed  CAS  Google Scholar 

  198. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26(8–9):959–969

    Article  PubMed  CAS  Google Scholar 

  199. Stout CE, Costantin JL, Naus CC, Charles AC (2002) Intercellular calcium signaling in astrocytes via ATP release through connexin hemichannels. J Biol Chem 277(12):10482–10488

    Article  PubMed  CAS  Google Scholar 

  200. Burnstock G (2006) Purinergic signalling. Br J Pharmacol 147(Suppl 1):S172–181

    PubMed Central  PubMed  CAS  Google Scholar 

  201. Illes P, Ribeiro JA (2004) Molecular physiology of P2 receptors in the central nervous system. Eur J Pharmacol 483:5–17

    Article  PubMed  CAS  Google Scholar 

  202. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229–274

    Article  PubMed  CAS  Google Scholar 

  203. Köles L, Fürst S, Illes P (2005) P2X and P2Y receptors as possible targets of therapeutic manipulations in CNS illnesses. Drug News Perspect 18:85–101

    Article  PubMed  CAS  Google Scholar 

  204. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    PubMed  CAS  Google Scholar 

  205. Gever JR, Cockayne DA, Dillon MP, Burnstock G, Ford AP (2006) Pharmacology of P2X channels. Pflugers Arch 452:513–537

    Article  PubMed  CAS  Google Scholar 

  206. von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432

    Article  CAS  Google Scholar 

  207. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 362:299–309

    Article  PubMed  CAS  Google Scholar 

  208. Burnstock G, Fredholm BB, Verkhratsky A (2011) Adenosine and ATP receptors in the brain. Curr Top Med Chem 11:973–1011

    Article  PubMed  CAS  Google Scholar 

  209. Edwards FA, Gibb AJ, Colquhoun D (1992) ATP receptor-mediated synaptic currents in the central nervous system. Nature 359:144–147

    Article  PubMed  CAS  Google Scholar 

  210. Sperlagh B, Kittel A, Lajtha A, Vizi ES (1995) ATP acts as fast neurotransmitter in rat habenula: neurochemical and enzyme cytochemical evidence. Neuroscience 66:915–920

    Article  PubMed  CAS  Google Scholar 

  211. Nieber K, Poelchen W, Illes P (1997) Role of ATP in fast excitatory synaptic potentials in locus coeruleus neurones of the rat. Br J Pharmacol 122:423–30

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  212. Mori M, Heuss C, Gahwiler BH, Gerber U (2001) Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal slice cultures. J Physiol 535:115–123

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  213. Pankratov Y, Castro E, Miras-Portugal MT, Krishtal O (1998) A purinergic component of the excitatory postsynaptic current mediated by P2X receptors in the CA1 neurons of the rat hippocampus. Eur J Neurosci 10:3898–3902

    Article  PubMed  CAS  Google Scholar 

  214. Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2002) Ionotropic P2X purinoreceptors mediate synaptic transmission in rat pyramidal neurones of layer II/III of somato-sensory cortex. J Physiol 542:529–536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  215. Pankratov Y, Lalo U, Verkhratsky A, North RA (2007) Quantal release of ATP in mouse cortex. J Gen Physiol 129:257–565

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  216. Sperlágh B, Heinrich A, Csölle C (2007) P2 receptor-mediated modulation of neurotransmitter release—an update. Purinergic Signal 3:269–284

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  217. Sebastião AM, Ribeiro JA (2009) Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol 7:180–194

    Article  PubMed Central  PubMed  Google Scholar 

  218. Sperlágh B, Vizi ES (2011) The role of extracellular adenosine in chemical neurotransmission in the hippocampus and basal ganglia: pharmacological and clinical aspects. Curr Top Med Chem 11:1034–1046

    Article  PubMed Central  PubMed  Google Scholar 

  219. Chen JF, Lee CF, Chern Y (2014) Adenosine receptor neurobiology: overview. Int Rev Neurobiol 119:1–49

    Article  PubMed  Google Scholar 

  220. Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: different roles, different sources and different receptors. Neurochem Int 38:107–125

    Article  PubMed  CAS  Google Scholar 

  221. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM (2005) Adenosine and brain function. Int Rev NeuroBiol 63:191–270

    Article  PubMed  CAS  Google Scholar 

  222. Ficker C, Rozmer K, Kató E, Andó RD, Schumann L, Krügel U, Franke H, Sperlágh B, Riedel T, Illes P (2014) Astrocyte-neuron interaction in the substantia gelatinosa of the spinal cord dorsal horn via P2X7 receptor-mediated release of glutamate and reactive oxygen species. Glia 62:1671–1686

    Article  PubMed  Google Scholar 

  223. Gu JG, MacDermott AB (1997) Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389:749–753

    Article  PubMed  CAS  Google Scholar 

  224. Jin YH, Bailey TW, Li BY, Schild JH, Andresen MC (2004) Purinergic and vanilloid receptor activation releases glutamate from separate cranial afferent terminals in nucleus tractus solitarius. J Neurosci 24:4709–4717

    Article  PubMed  CAS  Google Scholar 

  225. Khakh BS, Henderson G (1998) ATP receptor-mediated enhancement of fast excitatory neurotransmitter release in the brain. Mol Pharmacol 54:372–378

    PubMed  CAS  Google Scholar 

  226. Khakpay R, Polster D, Köles L, Skorinkin A, Szabo B, Wirkner K, Illes P (2010) Potentiation of the glutamatergic synaptic input to rat locus coeruleus neurons by P2X7 receptors. Purinergic Signal 6:349–359

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  227. Rodrigues RJ, Almeida T, Richardson PJ, Oliveira CR, Cunha RA (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295

    Article  PubMed  CAS  Google Scholar 

  228. Sperlágh B, Köfalvi A, Deuchars J, Atkinson L, Milligan CJ, Buckley NJ, Vizi ES (2002) Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 81:1196–1211

    Article  PubMed  Google Scholar 

  229. Bennett GC, Boarder MR (2000) The effect of nucleotides and adenosine on stimulus-evoked glutamate release from rat brain cortical slices. Br J Pharmacol 131:617–623

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  230. Price GD, Robertson SJ, Edwards FA (2003) Long-term potentiation of glutamatergic synaptic transmission induced by activation of presynaptic P2Y receptors in the rat medial habenula nucleus. Eur J Neurosci 17:844–850

    Article  PubMed  Google Scholar 

  231. Cunha RA, Sebastião AM, Ribeiro JA (1998) Inhibition by ATP of hippocampal synaptic transmission requires localized extracellular catabolism by ecto-nucleotidases into adenosine and channeling to adenosine A1 receptors. J Neurosci 18(6):1987–1995

    PubMed  CAS  Google Scholar 

  232. Masino SA, Diao L, Illes P, Zahniser NR, Larson GA, Johansson B, Fredholm BB, Dunwiddie TV (2002) Modulation of hippocampal glutamatergic transmission by ATP is dependent on adenosine a(1) receptors. J Pharmacol Exp Ther 303(1):356–363

    Article  PubMed  CAS  Google Scholar 

  233. Tautenhahn M, Leichsenring A, Servettini I, Pesic M, Sperlagh B, Nörenberg W, Illes P (2012) Purinergic modulation of the excitatory synaptic input onto rat striatal neurons. Neuropharmacology 62(4):1756–1766

    Article  PubMed  CAS  Google Scholar 

  234. Choi IS, Cho JH, Lee MG, Jang IS (2015) Enzymatic conversion of ATP to adenosine contributes to ATP-induced inhibition of glutamate release in rat medullary dorsal horn neurons. Neuropharmacology 93:94–102

    Article  PubMed  CAS  Google Scholar 

  235. de Mendonça A, Sebastião AM, Ribeiro JA (1995) Inhibition of NMDA receptor-mediated currents in isolated rat hippocampal neurones by adenosine A1 receptor activation. Neuroreport 6:1097–1100

    Article  PubMed  Google Scholar 

  236. Pamenter ME, Shin DS, Buck LT (2008) Adenosine A1 receptor activation mediates NMDA receptor activity in a pertussis toxin-sensitive manner during normoxia but not anoxia in turtle cortical neurons. Brain Res 1213:27–34

    Article  PubMed  CAS  Google Scholar 

  237. Kessey K, Mogul DJ (1997) NMDA-independent LTP by adenosine A2 receptor-mediated postsynaptic AMPA potentiation in hippocampus. J Neurophysiol 78:1965–1972

    PubMed  CAS  Google Scholar 

  238. Wirkner K, Assmann H, Köles L, Gerevich Z, Franke H, Nörenberg W, Boehm R, Illes P (2000) Inhibition by adenosine A2A receptors of NMDA but not AMPA currents in striatal neurons. Br J Pharmacol 30:259–269

    Article  Google Scholar 

  239. Wirkner K, Gerevich Z, Krause T, Günther A, Köles L, Schneider D, Nörenberg W, Illes P (2004) Adenosine A2A receptor-induced inhibition of NMDA and GABAA receptor-mediated synaptic currents in a subpopulation of rat striatal neurons. Neuropharmacology 46:994–1007

    Article  PubMed  CAS  Google Scholar 

  240. Cunha RA, Ferré S, Vaugeois JM, Chen JF (2008) Potential therapeutic interest of adenosine A2A receptors in psychiatric disorders. Curr Pharm Des 14(15):1512–1524

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  241. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA (2011) Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta 1808:1380–1399

    Article  PubMed  CAS  Google Scholar 

  242. Shen HY, Coelho JE, Ohtsuka N, Canas PM, Day YJ, Huang QY, Rebola N, Yu L, Boison D, Cunha RA, Linden J, Tsien JZ, Chen JF (2008) A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci 28(12):2970–2975

    Article  PubMed  CAS  Google Scholar 

  243. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29(1):83–120

    Article  PubMed  CAS  Google Scholar 

  244. Sarantis K, Tsiamaki E, Kouvaros S, Papatheodoropoulos C, Angelatou F (2015) Adenosine A2A receptors permit mGluR5-evoked tyrosine phosphorylation of NR2B (Tyr1472) in rat hippocampus: a possible key mechanism in NMDA receptor modulation. J Neurochem. doi:10.1111/jnc.13291

  245. Tebano MT, Martire A, Rebola N, Pepponi R, Domenici MR, Grò MC, Schwarzschild MA, Chen JF, Cunha RA, Popoli P (2005) Adenosine A2A receptors and metabotropic glutamate 5 receptors are co-localized and functionally interact in the hippocampus: a possible key mechanism in the modulation of N-methyl-D-aspartate effects. J Neurochem 95(4):1188–1200

    Article  PubMed  CAS  Google Scholar 

  246. Fellin T, Halassa MM, Terunuma M, Succol F, Takano H, Frank M, Moss SJ, Haydon PG (2009) Endogenous nonneuronal modulators of synaptic transmission control cortical slow oscillations in vivo. Proc Natl Acad Sci U S A 106(35):15037–15042

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  247. Deng Q, Terunuma M, Fellin T, Moss SJ, Haydon PG (2011) Astrocytic activation of A1 receptors regulates the surface expression of NMDA receptors through a Src kinase dependent pathway. Glia 59(7):1084–1093

    Article  PubMed Central  PubMed  Google Scholar 

  248. Boison D (2008) Adenosine as a neuromodulator in neurological diseases. Curr Opin Pharmacol 8(1):2–7

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  249. Lovatt D, Xu Q, Liu W, Takano T, Smith NA, Schnermann J, Tieu K, Nedergaard M (2012) Neuronal adenosine release, and not astrocytic ATP release, mediates feedback inhibition of excitatory activity. Proc Natl Acad Sci U S A 109(16):6265–6270

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  250. Gordon GR, Baimoukhametova DV, Hewitt SA, Rajapaksha WR, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  PubMed  CAS  Google Scholar 

  251. Pankratov Y, Lalo U, Krishtal O (2002) Role for P2X receptors in long-term potentiation. J Neurosci 22:8363–8369

    PubMed  CAS  Google Scholar 

  252. Baxter AW, Choi SJ, Sim JA, North RA (2011) Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 34:213–220

    Article  PubMed Central  PubMed  Google Scholar 

  253. Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M (1989) Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci U S A 86:9015–9019

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  254. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283:1657–1661

    Article  PubMed  CAS  Google Scholar 

  255. Grossberg S (2000) The imbalanced brain: from normal behavior to schizophrenia. Biol Psychiatry 48:81–98

    Article  PubMed  CAS  Google Scholar 

  256. Gulledge AT, Stuart GJ (2003) Action potential initiation and propagation in layer 5 pyramidal neurons of the rat prefrontal cortex: absence of dopamine modulation. J Neurosci 23:11363–11372

    PubMed  CAS  Google Scholar 

  257. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS (1979) Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 205:929–932

    Article  PubMed  CAS  Google Scholar 

  258. Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24:379–431

    Article  PubMed  CAS  Google Scholar 

  259. Kuroda M, Murakami K, Igarashi H, Okada A (1996) The convergence of axon terminals from the mediodorsal thalamic nucleus and ventral tegmental area on pyramidal cells in layer V of the rat prelimbic cortex. Eur J Neurosci 8:1340–1349

    Article  PubMed  CAS  Google Scholar 

  260. Carr DB, Sesack SR (2000) Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci 20:3864–3873

    PubMed  CAS  Google Scholar 

  261. Del Arco A, Mora F (2008) Prefrontal cortex-nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Pharmacol Biochem Behav 90:226–235

    Article  PubMed  CAS  Google Scholar 

  262. Burnstock G (1976) Do some nerve cells release more than one transmitter? Neuroscience 1:239–248

    Article  PubMed  CAS  Google Scholar 

  263. Poelchen W, Sieler D, Wirkner K, Illes P (2001) Co-transmission of ATP with noradrenaline in neurons of the rat nucleus locus coeruleus. Neuroscience 102:593–602

    Article  PubMed  CAS  Google Scholar 

  264. von Kügelgen I, Starke K (1991) Noradrenaline-ATP co-transmission in the sympathetic nervous system. Trends Pharmacol Sci 12:319–324

    Article  Google Scholar 

  265. Wirkner K, Köles L, Thümmler S, Luthardt J, Poelchen W, Franke H, Fürst S, Illes P (2002) Interaction between P2Y and NMDA receptors in layer V pyramidal neurons of the rat prefrontal cortex. Neuropharmacology 42:476–488

    Article  PubMed  CAS  Google Scholar 

  266. Luthardt J, Borvendeg SJ, Sperlagh B, Poelchen W, Wirkner K, Illes P (2003) P2Y1 receptor activation inhibits NMDA receptor-channels in layer V pyramidal neurons of the rat prefrontal cortex. Neurochem Int 42:161–172

    Article  PubMed  CAS  Google Scholar 

  267. Guzman SJ, Gerevich Z, Hengstler JG, Illes P, Kleemann W (2005) P2Y1 receptors inhibit both strength and plasticity of glutamatergic synaptic neurotransmission in the rat prefrontal cortex. Synapse 57:235–238

    Article  PubMed  CAS  Google Scholar 

  268. Guzman SJ, Schmidt H, Franke H, Krügel U, Eilers J, Illes P, Gerevich Z (2010) P2Y1 receptors inhibit long-term depression in the prefrontal cortex. Neuropharmacology 59:406–415

    Article  PubMed  CAS  Google Scholar 

  269. Fellin T, Pozzan T, Carmignoto G (2006) Purinergic receptors mediate two distinct glutamate release pathways in hippocampal astrocytes. J Biol Chem 281:4274–4284

    Article  PubMed  CAS  Google Scholar 

  270. Oliveira JF, Riedel T, Leichsenring A, Heine C, Franke H, Krügel U, Nörenberg W, Illes P (2011) Rodent cortical astroglia express in situ functional P2X7 receptors sensing pathologically high ATP concentrations. Cereb Cortex 21:806–820

    Article  PubMed  Google Scholar 

  271. Cronin C, Edwards TM, Gibbs ME (2011) Role for purinergic receptors in memory processing in young chicks. Behav Brain Res 223:417–420

    Article  PubMed  CAS  Google Scholar 

  272. Koch H, Bespalov A, Drescher K, Franke H, Krügel U (2015) Impaired cognition after stimulation of P2Y1 receptors in the rat medial prefrontal cortex. Neuropsychopharmacology 40:305–314

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  273. Krügel U, Köles L, Illés P (2013) Integration of neuronal and glial signalling by pyramidal cells of the rat prefrontal cortex; control of cognitive functions and addictive behaviour by purinergic mechanisms. Neuropsychopharmacol Hung 15:206–213

    PubMed  Google Scholar 

  274. Cao X, Li LP, Wang Q, Wu Q, Hu HH, Zhang M, Fang YY, Zhang J, Li SJ, Xiong WC, Yan HC, Gao YB, Liu JH, Li XW, Sun LR, Zeng YN, Zhu XH, Gao TM (2013) Astrocyte-derived ATP modulates depressive-like behaviors. Nat Med 19:773–777

    Article  PubMed  CAS  Google Scholar 

  275. Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12:652–669

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  276. Kalivas PW (2007) Cocaine and amphetamine-like psychostimulants: neurocircuitry and glutamate neuroplasticity. Dialogues Clin Neurosci 9:389–397

    PubMed Central  PubMed  Google Scholar 

  277. Steketee JD (2003) Neurotransmitter systems of the medial prefrontal cortex: potential role in sensitization to psychostimulants. Brain Res Brain Res Rev 41:203–228

    Article  PubMed  CAS  Google Scholar 

  278. Krügel U, Kittner H, Illes P (1999) Adenosine 5′-triphosphate-induced dopamine release in the rat nucleus accumbens in vivo. Neurosci Lett 265:49–52

    Article  PubMed  Google Scholar 

  279. Kittner H, Krügel U, Hoffmann E, Illes P (2000) Effects of intra-accumbens injection of 2-methylthio ATP: a combined open field and electroencephalographic study in rats. Psychopharmacology (Berl) 150:123–131

    Article  CAS  Google Scholar 

  280. Wolf ME (1998) The role of excitatory amino acids in behavioural sensitization to psychomotor stimulants. Prog Neurobiol 54:679–720

    Article  PubMed  CAS  Google Scholar 

  281. Krügel U, Kittner H, Franke H, Illes P (2001) Stimulation of P2 receptors in the ventral tegmental area enhances dopaminergic mechanisms in vivo. Neuropharmacology 40:1084–1093

    Article  PubMed  Google Scholar 

  282. Franke H, Kittner H, Grosche J, Illes P (2003) Enhanced P2Y1 receptor expression in the brain after sensitisation with d-amphetamine. Psychopharmacology (Berl) 167:187–194

    CAS  Google Scholar 

  283. Kittner H, Krügel U, Illes P (2001) The purinergic P2 receptor antagonist pyridoxalphosphate-6-azophenyl-2′,4′-disulphonic acid prevents both the acute locomotor effects of amphetamine and the behavioural sensitization caused by repeated amphetamine injections in rats. Neuroscience 102:241–243

    Article  PubMed  CAS  Google Scholar 

  284. Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44(1):5–21

    Article  PubMed  CAS  Google Scholar 

  285. Harris EW, Cotman CW (1986) Long-term potentiation of guinea pig mossy fiber responses is not blocked by N-methyl D-aspartate antagonists. Neurosci Lett 70(1):132–137

    Article  PubMed  CAS  Google Scholar 

  286. Goodman CS, Shatz CJ (1993) Developmental mechanisms that generate precise patterns of neuronal connectivity. Cell 72(Suppl):77–98

    Article  PubMed  Google Scholar 

  287. Fitzsimonds RM, Poo MM (1998) Retrograde signaling in the development and modification of synapses. Physiol Rev 78(1):143–170

    PubMed  CAS  Google Scholar 

  288. Dias RB, Rombo DM, Ribeiro JA, Henley JM, Sebastião AM (2013) Adenosine: setting the stage for plasticity. Trends Neurosci 36(4):248–257

    Article  PubMed  CAS  Google Scholar 

  289. Sebastião AM, Ribeiro JA (2009) Adenosine receptors and the central nervous system. Handb Exp Pharmacol 193:471–534

    Article  PubMed  CAS  Google Scholar 

  290. Sebastião AM, Ribeiro JA (2015) Neuromodulation and metamodulation by adenosine: impact and subtleties upon synaptic plasticity regulation. Brain Res 1621:102–113

    Article  PubMed  CAS  Google Scholar 

  291. Lopes LV, Cunha RA, Kull B, Fredholm BB, Ribeiro JA (2002) Adenosine A2A receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience 112:319–329

    Article  PubMed  CAS  Google Scholar 

  292. Diógenes MJ, Fernandes CC, Sebastião AM, Ribeiro JA (2004) Activation of adenosine A2A receptor facilitates brain-derived neurotrophic factor modulation of synaptic transmission in hippocampal slices. J Neurosci 24(12):2905–2913

    Article  PubMed  CAS  Google Scholar 

  293. Fontinha BM, Diógenes MJ, Ribeiro JA, Sebastião AM (2008) Enhancement of long-term potentiation by brain-derived neurotrophic factor requires adenosine A2A receptor activation by endogenous adenosine. Neuropharmacology 54(6):924–933

    Article  PubMed  CAS  Google Scholar 

  294. Costenla AR, Diógenes MJ, Canas PM, Rodrigues RJ, Nogueira C, Maroco J, Agostinho PM, Ribeiro JA, Cunha RA, de Mendonça A (2011) Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci 34(1):12–21

    Article  PubMed  Google Scholar 

  295. Rebola N, Lujan R, Cunha RA, Mulle C (2008) Adenosine A2A receptors are essential for long-term potentiation of NMDA-EPSCs at hippocampal mossy fiber synapses. Neuron 57(1):121–134

    Article  PubMed  CAS  Google Scholar 

  296. Dias RB, Ribeiro JA, Sebastião AM (2012) Enhancement of AMPA currents and GluR1 membrane expression through PKA-coupled adenosine A2A receptors. Hippocampus 22(2):276–291

    Article  PubMed  CAS  Google Scholar 

  297. Fontinha BM, Delgado-García JM, Madroñal N, Ribeiro JA, Sebastião AM, Gruart A (2009) Adenosine A2A receptor modulation of hippocampal CA3-CA1 synapse plasticity during associative learning in behaving mice. Neuropsychopharmacology 34(7):1865–1874

    Article  PubMed  CAS  Google Scholar 

  298. Cunha RA, Agostinho PM (2010) Chronic caffeine consumption prevents memory disturbance in different animal models of memory decline. J Alzheimers Dis Suppl 1:S95–116

    Google Scholar 

  299. Kaster MP, Machado NJ, Silva HB, Nunes A, Ardais AP, Santana M, Baqi Y, Müller CE, Rodrigues AL, Porciúncula LO, Chen JF, Tomé ÂR, Agostinho P, Canas PM, Cunha RA (2015) Caffeine acts through neuronal adenosine A2A receptors to prevent mood and memory dysfunction triggered by chronic stress. Proc Natl Acad Sci U S A 112(25):7833–7838

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  300. Devan BD, Pistell PJ, Daffin LW Jr, Nelson CM, Duffy KB, Bowker JL, Bharati IS, Sierra-Mercado D, Spangler EL, Ingram DK (2007) Sildenafil citrate attenuates a complex maze impairment induced by intracerebroventricular infusion of the NOS inhibitor N omega-nitro-L-arginine methyl ester. Eur J Pharmacol 563(1–3):134–140

    Article  PubMed  CAS  Google Scholar 

  301. Rivera-Oliver M, Díaz-Ríos M (2014) Using caffeine and other adenosine receptor antagonists and agonists as therapeutic tools against neurodegenerative diseases: a review. Life Sci 101(1–2):1–9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  302. Vila-Luna S, Cabrera-Isidoro S, Vila-Luna L, Juárez-Díaz I, Bata-García JL, Alvarez-Cervera FJ, Zapata-Vázquez RE, Arankowsky-Sandoval G, Heredia-López F, Flores G, Góngora-Alfaro JL (2012) Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 202:384–395

    Article  PubMed  CAS  Google Scholar 

  303. Dall’Igna OP, Fett P, Gomes MW, Souza DO, Cunha RA, Lara DR (2007) Caffeine and adenosine A(2a) receptor antagonists prevent beta-amyloid (25-35)-induced cognitive deficits in mice. Exp Neurol 203(1):241–245

    Article  PubMed  CAS  Google Scholar 

  304. Li W, Silva HB, Real J, Wang YM, Rial D, Li P, Payen MP, Zhou Y, Muller CE, Tomé AR, Cunha RA, Chen JF (2015) Inactivation of adenosine A2A receptors reverses working memory deficits at early stages of Huntington’s disease models. Neurobiol Dis 79:70–80

    Article  PubMed  CAS  Google Scholar 

  305. Ferré S, Bonaventura J, Tomasi D, Navarro G, Moreno E, Cortés A, Lluís C, Casadó V, Volkow ND (2015) Allosteric mechanisms within the adenosine A2A-dopamine D2 receptor heterotetramer. Neuropharmacology. doi:10.1016/j.neuropharm.2015.05.028

  306. Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boué-Grabot E (2014) ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–430

    Article  PubMed  CAS  Google Scholar 

  307. Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  308. Khakh BS, North RA (2012) Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76:51–69

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  309. Xu J, Khakh BS (2014) Slow neuromodulation mediated by ATP P2X receptors. Neuron 83:257–259

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  310. Chen J, Tan Z, Zeng L, Zhang X, He Y, Gao W, Wu X, Li Y, Bu B, Wang W, Duan S (2013) Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia 61(2):178–191

    Article  PubMed  Google Scholar 

  311. Burnstock G (2008) Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov 7(7):575–590

    Article  PubMed  CAS  Google Scholar 

  312. Burnstock G (2015) An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology. doi:10.1016/j.neuropharm.2015.05.031

  313. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  PubMed  CAS  Google Scholar 

  314. Fuxe K, Dahlström A, Höistad M, Marcellino D, Jansson A, Rivera A, Diaz-Cabiale Z, Jacobsen K, Tinner-Staines B, Hagman B, Leo G, Staines W, Guidolin D, Kehr J, Genedani S, Belluardo N, Agnati LF (2007) From the Golgi-Cajal mapping to the transmitter-based characterization of the neuronal networks leading to two modes of brain communication: wiring and volume transmission. Brain Res Rev 55(1):17–54

    Article  PubMed  CAS  Google Scholar 

  315. Rial D, Lara DR, Cunha RA (2014) The adenosine neuromodulation system in schizophrenia. Int Rev Neurobiol 119:395–449

    Article  PubMed  Google Scholar 

  316. Dunwiddie TV, Masino SA (2001) The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 24:31–55

    Article  PubMed  CAS  Google Scholar 

  317. Serchov T, Clement HW, Schwarz MK, Iasevoli F, Tosh DK, Idzko M, Jacobson KA, de Bartolomeis A, Normann C, Biber K, van Calker D (2015) Increased signaling via adenosine A1 receptors, sleep deprivation, imipramine, and ketamine inhibit depressive-like behavior via induction of homer1a. Neuron 87(3):549–562

    Article  PubMed  CAS  Google Scholar 

  318. Woodson JC, Minor TR, Job RF (1998) Inhibition of adenosine deaminase by erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) mimics the effect of inescapable shock on escape learning in rats. Behav Neurosci 112(2):399–409

    Article  PubMed  CAS  Google Scholar 

  319. Hodgson RA, Bertorelli R, Varty GB, Lachowicz JE, Forlani A, Fredduzzi S, Cohen-Williams ME, Higgins GA, Impagnatiello F, Nicolussi E, Parra LE, Foster C, Zhai Y, Neustadt BR, Stamford AW, Parker EM, Reggiani A, Hunter JC (2009) Characterization of the potent and highly selective A2A receptor antagonists preladenant and SCH 412348 [7-[2-[4-2,4-difluorophenyl]-1-piperazinyl]ethyl]-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine] in rodent models of movement disorders and depression. J Pharmacol Exp Ther 330(1):294–303

    Article  PubMed  CAS  Google Scholar 

  320. Sperlagh B, Csolle C, Ando RD, Goloncser F, Kittel A, Baranyi M (2012) The role of purinergic signaling in depressive disorders. Neuropsychopharmacol Hung 14(4):231–238

    PubMed  Google Scholar 

  321. Iadarola ND, Niciu MJ, Richards EM, Vande Voort JL, Ballard ED, Lundin NB, Nugent AC, Machado-Vieira R, Zarate CA Jr (2015) Ketamine and other N-methyl-D-aspartate receptor antagonists in the treatment of depression: a perspective review. Ther Adv Chronic Dis 6(3):97–114

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  322. Skolnick P, Popik P, Trullas R (2009) Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci 30(11):563–569

    Article  PubMed  CAS  Google Scholar 

  323. Shah U, Hodgson R (2010) Recent progress in the discovery of adenosine A(2A) receptor antagonists for the treatment of Parkinson’s disease. Curr Opin Drug Discov Devel 13(4):466–480

    PubMed  CAS  Google Scholar 

  324. Agnati LF, Ferre S, Burioni R, Woods A, Genedani S, Franco R, Fuxe K (2005) Existence and theoretical aspects of homomeric and heteromeric dopamine receptor complexes and their relevance for neurological diseases. Neuromolecular Med 7(1–2):61–78

    Article  PubMed  CAS  Google Scholar 

  325. Beggiato S, Antonelli T, Tomasini MC, Borelli AC, Agnati LF, Tanganelli S, Fuxe K, Ferraro L (2014) Adenosine A2A-D2 receptor-receptor interactions in putative heteromers in the regulation of the striato-pallidal GABA pathway: possible relevance for Parkinson’s disease and its treatment. Curr Protein Pept Sci 15(7):673–680

    Article  PubMed  CAS  Google Scholar 

  326. Fan MM, Raymond LA (2007) N-methyl-D-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81(5–6):272–293

    Article  PubMed  CAS  Google Scholar 

  327. Popoli P, Blum D, Martire A, Ledent C, Ceruti S, Abbracchio MP (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2A receptors in Huntington’s disease. Prog Neurobiol 81(5–6):331–348

    Article  PubMed  CAS  Google Scholar 

  328. Martire A, Ferrante A, Potenza RL, Armida M, Ferretti R, Pézzola A, Domenici MR, Popoli P (2010) Remodeling of striatal NMDA receptors by chronic A(2A) receptor blockade in Huntington’s disease mice. Neurobiol Dis 37(1):99–105

    Article  PubMed  CAS  Google Scholar 

  329. Illes P, Verkhratsky A (2015) Purinergic neurone-glia signalling in cognitive-related pathologies. Neuropharmacology. doi:10.1016/j.neuropharm.2015.08.005

  330. Rodrigues RJ, Tomé AR, Cunha RA (2015) ATP as a multi-target danger signal in the brain. Front Neurosci 9:148

    Article  PubMed Central  PubMed  Google Scholar 

  331. Sperlágh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78(6):327–346

    Article  PubMed  CAS  Google Scholar 

  332. Sperlágh B, Illes P (2014) P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol Sci 35(10):537–547

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is dedicated to Professor Joseph Knoll, a famous Hungarian pharmacologist, who celebrated in 2015 his 90th birthday. Both Peter Illes and Laszlo Köles worked at certain stages of their scientific career together with Joseph Knoll and are grateful to him for his continuous support. We are grateful to Professor Ana Maria Sebastiao for most helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to László Köles or Peter Illes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Köles, L., Kató, E., Hanuska, A. et al. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signalling 12, 1–24 (2016). https://doi.org/10.1007/s11302-015-9480-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-015-9480-5

Keywords

Navigation