Skip to main content

Advertisement

Log in

IRF8 is a transcriptional determinant for microglial motility

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Microglia, the resident immune cells of the central nervous system, are constitutively mobile cells that undergo rapid directional movement toward sites of tissue disruption. However, transcriptional regulatory mechanisms of microglial motility remain unknown. In the present study, we show that interferon regulatory factor-8 (IRF8) regulates microglial motility. We found that ATP and complement component, C5a, induced chemotaxis of IRF8 wild-type microglia. However, these responses were markedly suppressed in microglia lacking IRF8 (Irf8 −/−). In a consistent manner, phosphorylation of Akt (which plays a crucial role in ATP-induced chemotaxis) was abolished in Irf8 −/−microglia. Real-time polymerase chain reaction analysis revealed that motility-related microglial genes such as P2Y12 receptor were significantly suppressed in Irf8 −/−microglia. Furthermore, Irf8 −/−microglia exhibited a differential expression pattern of nucleotide-degrading enzymes compared with their wild-type counterparts. Overall, our findings suggest that IRF8 may regulate microglial motility via the control of microglial gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hanisch UK, Kettenmann H (2007) Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 10(11):1387–1394. doi:10.1038/nn1997

    Article  CAS  PubMed  Google Scholar 

  2. Ransohoff RM, Cardona AE, Ransohoff RM, Cardona AE (2010) The myeloid cells of the central nervous system parenchyma. Nature 468(7321):253–262. doi:10.1038/nature09615

    Article  CAS  PubMed  Google Scholar 

  3. Graeber MB (2010) Changing face of microglia. Science 330(6005):783–788. doi:10.1126/science.1190929

    Article  CAS  PubMed  Google Scholar 

  4. Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726):1314–1318. doi:10.1126/science.1110647

    Article  CAS  PubMed  Google Scholar 

  5. Masuda T, Tsuda M, Yoshinaga R, Tozaki-Saitoh H, Ozato K, Tamura T, Inoue K (2012) IRF8 is a critical transcription factor for transforming microglia into a reactive phenotype. Cell Rep 1(4):334–340. doi:10.1016/j.celrep.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  6. Rivest S (2009) Regulation of innate immune responses in the brain. Nat Rev Immunol 9(6):429–439. doi:10.1038/nri2565

    Article  CAS  PubMed  Google Scholar 

  7. Koizumi S, Shigemoto-Mogami Y, Nasu-Tada K, Shinozaki Y, Ohsawa K, Tsuda M, Joshi BV, Jacobson KA, Kohsaka S, Inoue K (2007) UDP acting at P2Y6 receptors is a mediator of microglial phagocytosis. Nature 446(7139):1091–1095. doi:10.1038/nature05704

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, Littman DR, Dustin ML, Gan WB (2005) ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 8(6):752–758. doi:10.1038/nn1472

    Article  CAS  PubMed  Google Scholar 

  9. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, Julius D (2006) The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 9(12):1512–1519. doi:10.1038/nn1805

    Article  CAS  PubMed  Google Scholar 

  10. Carbonell WS, Murase S, Horwitz AF, Mandell JW (2005) Migration of perilesional microglia after focal brain injury and modulation by CC chemokine receptor 5: an in situ time-lapse confocal imaging study. J Neurosci 25(30):7040–7047. doi:10.1523/JNEUROSCI.5171-04.2005

    Article  CAS  PubMed  Google Scholar 

  11. Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2012) Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem 121(2):217–227. doi:10.1111/j.1471-4159.2012.07693.x

    Article  CAS  PubMed  Google Scholar 

  12. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55(6):604–616. doi:10.1002/glia.20489

    Article  PubMed  Google Scholar 

  13. Färber K, Markworth S, Pannasch U, Nolte C, Prinz V, Kronenberg G, Gertz K, Endres M, Bechmann I, Enjyoji K, Robson S, Kettenmann H (2008) The ectonucleotidase cd39/ENTPDase1 modulates purinergic-mediated microglial migration. Glia 56(3):331–341. doi:10.1002/glia.20606

    Article  PubMed  Google Scholar 

  14. Antonioli L, Pacher P, Vizi ES, Hasko G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med 19(6):355–367. doi:10.1016/j.molmed.2013.03.005

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Nolte C, Moller T, Walter T, Kettenmann H (1996) Complement 5a controls motility of murine microglial cells in vitro via activation of an inhibitory G-protein and the rearrangement of the actin cytoskeleton. Neuroscience 73(4):1091–1107

    Article  CAS  PubMed  Google Scholar 

  16. Irino Y, Nakamura Y, Inoue K, Kohsaka S, Ohsawa K (2008) Akt activation is involved in P2Y12 receptor-mediated chemotaxis of microglia. J Neurosci Res 86(7):1511–1519. doi:10.1002/jnr.21610

    Article  CAS  PubMed  Google Scholar 

  17. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, Wieghofer P, Heinrich A, Riemke P, Holscher C, Muller DN, Luckow B, Brocker T, Debowski K, Fritz G, Opdenakker G, Diefenbach A, Biber K, Heikenwalder M, Geissmann F, Rosenbauer F, Prinz M (2013) Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 16(3):273–280. doi:10.1038/nn.3318

    Article  CAS  PubMed  Google Scholar 

  18. Horiuchi M, Wakayama K, Itoh A, Kawai K, Pleasure D, Ozato K, Itoh T (2012) Interferon regulatory factor 8/interferon consensus sequence binding protein is a critical transcription factor for the physiological phenotype of microglia. J Neuroinflammation 9:227. doi:10.1186/1742-2094-9-227

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Minten C, Terry R, Deffrasnes C, King NJ, Campbell IL (2012) IFN regulatory factor 8 is a key constitutive determinant of the morphological and molecular properties of microglia in the CNS. PLoS One 7(11):e49851. doi:10.1371/journal.pone.0049851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Kanegasaki S, Nomura Y, Nitta N, Akiyama S, Tamatani T, Goshoh Y, Yoshida T, Sato T, Kikuchi Y (2003) A novel optical assay system for the quantitative measurement of chemotaxis. J Immunol Methods 282(1–2):1–11

    Article  CAS  PubMed  Google Scholar 

  21. Nitta N, Tsuchiya T, Yamauchi A, Tamatani T, Kanegasaki S (2007) Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device—TAXIScan. J Immunol Methods 320(1–2):155–163. doi:10.1016/j.jim.2006.12.010

    Article  CAS  PubMed  Google Scholar 

  22. Honda S, Sasaki Y, Ohsawa K, Imai Y, Nakamura Y, Inoue K, Kohsaka S (2001) Extracellular ATP or ADP induce chemotaxis of cultured microglia through Gi/o-coupled P2Y receptors. J Neurosci 21(6):1975–1982

    CAS  PubMed  Google Scholar 

  23. Stambolic V, Woodgett JR (2006) Functional distinctions of protein kinase B/Akt isoforms defined by their influence on cell migration. Trends Cell Biol 16(9):461–466. doi:10.1016/j.tcb.2006.07.001

    Article  CAS  PubMed  Google Scholar 

  24. Braun N, Sevigny J, Robson SC, Enjyoji K, Guckelberger O, Hammer K, Di Virgilio F, Zimmermann H (2000) Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur J Neurosci 12(12):4357–4366

    CAS  PubMed  Google Scholar 

  25. Walter L, Franklin A, Witting A, Wade C, Xie Y, Kunos G, Mackie K, Stella N (2003) Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J Neurosci 23(4):1398–1405

    CAS  PubMed  Google Scholar 

  26. Ohsawa K, Irino Y, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S (2010) P2Y12 receptor-mediated integrin-beta1 activation regulates microglial process extension induced by ATP. Glia 58(7):790–801. doi:10.1002/glia.20963

    PubMed  Google Scholar 

  27. Maeda M, Tsuda M, Tozaki-Saitoh H, Inoue K, Kiyama H (2010) Nerve injury-activated microglia engulf myelinated axons in a P2Y12 signaling-dependent manner in the dorsal horn. Glia 58(15):1838–1846. doi:10.1002/glia.21053

    Article  PubMed  Google Scholar 

  28. Tozaki-Saitoh H, Tsuda M, Miyata H, Ueda K, Kohsaka S, Inoue K (2008) P2Y12 receptors in spinal microglia are required for neuropathic pain after peripheral nerve injury. J Neurosci 28(19):4949–4956. doi:10.1523/JNEUROSCI.0323-08.2008

    Article  CAS  PubMed  Google Scholar 

  29. Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW, Inoue K (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424(6950):778–783. doi:10.1038/nature01786 nature01786

    Article  CAS  PubMed  Google Scholar 

  30. Zhang J, Shi XQ, Echeverry S, Mogil JS, De Koninck Y, Rivest S (2007) Expression of CCR2 in both resident and bone marrow-derived microglia plays a critical role in neuropathic pain. J Neurosci 27(45):12396–12406. doi:10.1523/JNEUROSCI.3016-07.2007

    Article  CAS  PubMed  Google Scholar 

  31. Griffin RS, Costigan M, Brenner GJ, Ma CH, Scholz J, Moss A, Allchorne AJ, Stahl GL, Woolf CJ (2007) Complement induction in spinal cord microglia results in anaphylatoxin C5a-mediated pain hypersensitivity. J Neurosci 27(32):8699–8708. doi:10.1523/JNEUROSCI.2018-07.2007

    Article  CAS  PubMed  Google Scholar 

  32. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140(6):918–934. doi:10.1016/j.cell.2010.02.016

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201. doi:10.1038/nrneurol.2010.17

    Article  PubMed  Google Scholar 

  34. Inoue K, Tsuda M (2009) Microglia and neuropathic pain. Glia 57(14):1469–1479. doi:10.1002/glia.20871

    Article  PubMed  Google Scholar 

  35. Nakajima K, Shimojo M, Hamanoue M, Ishiura S, Sugita H, Kohsaka S (1992) Identification of elastase as a secretory protease from cultured rat microglia. J Neurochem 58(4):1401–1408

    Article  CAS  PubMed  Google Scholar 

  36. Holtschke T, Lohler J, Kanno Y, Fehr T, Giese N, Rosenbauer F, Lou J, Knobeloch KP, Gabriele L, Waring JF, Bachmann MF, Zinkernagel RM, Morse HC 3rd, Ozato K, Horak I (1996) Immunodeficiency and chronic myelogenous leukemia-like syndrome in mice with a targeted mutation of the ICSBP gene. Cell 87(2):307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Ryohei Yoshinaga and Mr. Shosuke Iwamoto for assisting with experiments and Dr. Keiko Ozato for kindly providing Irf8 −/−mice. This work was supported by grants from the Japan Society for the Promotion of Science (JSPS) through the “Funding Program for Next Generation World-Leading Researchers (NEXT Program)” initiated by the Council for Science and Technology Policy (CSTP; M.T.) and the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.M., M.T., K.I.), from the Japan Science and Technology Agency (JST) through the Core Research for Evolutional Science and Technology (CREST) program (K.I.) and by Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Competing financial interests

The authors have no competing financial interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makoto Tsuda or Kazuhide Inoue.

Additional information

Takahiro Masuda and Nao Nishimoto contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masuda, T., Nishimoto, N., Tomiyama, D. et al. IRF8 is a transcriptional determinant for microglial motility. Purinergic Signalling 10, 515–521 (2014). https://doi.org/10.1007/s11302-014-9413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9413-8

Keywords

Navigation