Skip to main content
Log in

Basal and inducible expression of the thiol-sensitive ART2.1 ecto-ADP-ribosyltransferase in myeloid and lymphoid leukocytes

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

ADP-ribosylation of cell surface proteins in mammalian cells is a post-translational modification by which ecto-ADP-ribosyltransferases (ARTs) transfer ADP-ribose from extracellular NAD to protein targets. The ART2 locus at murine chromosome 7 encompasses the tandem Art2a and Art2b genes that encode the distinct ART2.1 and ART2.2 proteins. Although both ecto-enzymes share 80% sequence identity, ART2.1 activity is uniquely regulated by an allosteric disulfide bond that is reducible in the presence of extracellular thiols, such as cysteine and glutathione, that accumulate in hypoxic and ischemic tissues. Previous studies have characterized the expression of ART2.1 and ART2.2 in murine T lymphocytes but not in other major classes of lymphoid and myeloid leukocytes. Here, we describe the expression of ART2.1 activity in a wide range of freshly isolated or tissue-cultured murine myeloid and lymphoid leukocytes. Spleen-derived macrophages, dendritic cells (DC), and B cells constitutively express ART2.1 as their predominant ART while spleen T cells express both ART2.1 and the thiol-independent ART2.2 isoform. Although bone-marrow-derived macrophages (BMDM) and dendritic cells (BMDC) constitutively express ART2.1 at low levels, it is markedly up-regulated when these cells are stimulated in vitro with IFNβ or IFNγ. ART2.1 expression and activity in splenic B cells is modestly up-regulated during incubation in vitro for 24 h, a condition that promotes B cell apoptosis. This increase in ART2.1 is attenuated by IL-4 (a B cell survival factor), but is not affected by IFNβ/γ, suggesting a possible induction of ART2.1 as an ancillary response to B cell apoptosis. In contrast, ART2.1 and ART2.2, which are highly expressed in freshly isolated splenic T cells, are markedly down-regulated when purified T cells are incubated in vitro for 12–24 h. Studies with the BW5147 mouse thymocyte line verified basal expression of ART2.1 and ART2.2, as in primary spleen T cells, and demonstrated that both isoforms can be up-regulated when T cells are maintained in the presence of IFNs. Comparison of the surface proteins which are ADP-ribosylated by ART2.1 in the different leukocyte subtypes indicated both shared and cell-specific proteins as ART2.1 substrates. The LFA-1 integrin, a major target for ART2.2 in T cells, is also ADP-ribosylated by the ART2.1 expressed in macrophages. Thus, ART2.1, in contrast to ART2.2, is expressed in a broad range of myeloid and lymphoid leukocytes. The thiol redox-sensitive nature of this ecto-enzyme suggests an involvement in purinergic signaling that occurs in the combined context of inflammation and hypoxia/ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22:1953–1958. doi:10.1093/emboj/cdg209

    Article  PubMed  CAS  Google Scholar 

  2. Koch-Nolte F, Adriouch S, Bannas P, Krebs C, Scheuplein F, Seman M, Haag F (2006) ADP-ribosylation of membrane proteins: unveiling the secrets of a crucial regulatory mechanism in mammalian cells. Ann Med 38:188–199. doi:10.1080/07853890600655499

    Article  PubMed  CAS  Google Scholar 

  3. Seman M, Adriouch S, Haag F, Koch-Nolte F (2004) Ecto-ADP-ribosyltransferases (ARTs): emerging actors in cell communication and signaling. Curr Med Chem 11:857–872. doi:10.2174/0929867043455611

    Article  PubMed  CAS  Google Scholar 

  4. Zhao Z, Gruszczynska-Biegala J, Zolkiewska A (2005) ADP-ribosylation of integrin α7 modulates the binding of integrin α7β1 to laminin. Biochem J 385:309–317. doi:10.1042/BJ20040590

    Article  PubMed  CAS  Google Scholar 

  5. Glowacki G, Braren R, Firner K, Nissen M, Kuhl M, Reche P, Bazan F, Cetkovic-Cvrlje M, Leiter E, Haag F, Koch-Nolte F (2002) The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse. Protein Sci 11:1657–1670. doi:10.1110/ps.0200602

    Article  PubMed  CAS  Google Scholar 

  6. Liu ZX, Yu Y, Dennert G (1999) A cell surface ADP-ribosyltransferase modulates T cell receptor association and signaling. J Biol Chem 274:17399–17401. doi:10.1074/jbc.274.25.17399

    Article  PubMed  CAS  Google Scholar 

  7. Nemoto E, Stohlman S, Dennert G (1996) Release of a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase from cytotoxic T cells upon activation. J Immunol 156:85–92

    PubMed  CAS  Google Scholar 

  8. Okamoto S, Azhipa O, Yu Y, Russo E, Dennert G (1998) Expression of ADP-ribosyltransferase on normal T lymphocytes and effects of nicotinamide adenine dinucleotide on their function. J Immunol 160:4190–4198

    PubMed  CAS  Google Scholar 

  9. Seman M, Adriouch S, Scheuplein F, Krebs C, Freese D, Glowacki G, Deterre P, Haag F, Koch-Nolte F (2003) NAD-induced T cell death: ADP-ribosylation of cell surface proteins by ART2 activates the cytolytic P2X7 purinoceptor. Immunity 19:571–582. doi:10.1016/S1074-7613(03)00266-8

    Article  PubMed  CAS  Google Scholar 

  10. Adriouch S, Bannas P, Schwarz N, Fliegert R, Guse AH, Seman M, Haag F, Koch-Nolte F (2008) ADP-ribosylation at R125 gates the P2X7 ion channel by presenting a covalent ligand to its nucleotide binding site. FASEB J 22:861–869. doi:10.1096/fj.07-9294com

    Article  PubMed  CAS  Google Scholar 

  11. Hara N, Badruzzaman M, Sugae T, Shimoyama M, Tsuchiya M (1999) Mouse Rt6.1 is a thiol-dependent arginine-specific ADP-ribosyltransferase. Eur J Biochem 259:289–294. doi:10.1046/j.1432-1327.1999.00039

    Article  PubMed  CAS  Google Scholar 

  12. Hara N, Terashima M, Shimoyama M, Tsuchiya M (2000) Mouse T-cell antigen Rt6.1 has thiol-dependent NAD glycohydrolase activity. J Biochem 128:601–607

    PubMed  CAS  Google Scholar 

  13. Adriouch S, Ohlrogge W, Haag F, Koch-Nolte F, Seman M (2001) Rapid induction of naive T cell apoptosis by ecto-nicotinamide adenine dinucleotide: requirement for mono(ADP-ribosyl) transferase 2 and a downstream effector. J Immunol 167:196–203

    PubMed  CAS  Google Scholar 

  14. Koch-Nolte F, Klein J, Hollmann C, Kuhl M, Haag F, Gaskins HR, Leiter E, Thiele HG (1995) Defects in the structure and expression of the genes for the T cell marker Rt6 in NZW and (NZB x NZW) F1 mice. Int Immunol 7:883–890. doi:10.1093/intimm/7.5.883

    Article  PubMed  CAS  Google Scholar 

  15. Sardinha DF, Rajan TV (1999) Cis-acting regulation of splenic Art2 gene expression in inbred mouse strains. Immunogenetics 49:700–703. doi:10.1007/s002510050668

    Article  PubMed  CAS  Google Scholar 

  16. Hong S, Brass A, Seman M, Haag F, Koch-Nolte F, Dubyak GR (2007) Lipopolysaccharide, IFN-γ, and IFN-β induce expression of the thiol-sensitive ART2.1 Ecto-ADP-ribosyltransferase in murine macrophages. J Immunol 179:6215–6227

    PubMed  CAS  Google Scholar 

  17. Liu ZX, Azhipa O, Okamoto S, Govindarajan S, Dennert G (2001) Extracellular nicotinamide adenine dinucleotide induces T cell apoptosis in vivo and in vitro. J Immunol 167:4942–4947

    PubMed  CAS  Google Scholar 

  18. Kawamura H, Aswad F, Minagawa M, Govindarajan S, Dennert G (2006) P2X7 receptors regulate NKT cells in autoimmune hepatitis. J Immunol 176:2152–2160

    PubMed  CAS  Google Scholar 

  19. Kawamura H, Aswad F, Minagawa M, Malone K, Kaslow H, Koch-Nolte F, Schott WH, Leiter EH, Dennert G (2005) P2X7 receptor-dependent and -independent T cell death is induced by nicotinamide adenine dinucleotide. J Immunol 174:1971–1979

    PubMed  CAS  Google Scholar 

  20. Aswad F, Kawamura H, Dennert G (2005) High sensitivity of CD4+CD25+ regulatory T cells to extracellular metabolites nicotinamide adenine dinucleotide and ATP: a role for P2X7 receptors. J Immunol 175:3075–3083

    PubMed  CAS  Google Scholar 

  21. Koch-Nolte F, Duffy T, Nissen M, Kahl S, Killeen N, Ablamunits V, Haag F, Leiter EH (1999) A new monoclonal antibody detects a developmentally regulated mouse ecto-ADP-ribosyltransferase on T cells: subset distribution, inbred strain variation, and modulation upon T cell activation. J Immunol 163:6014–6022

    PubMed  CAS  Google Scholar 

  22. Kanaitsuka T, Bortell R, Stevens LA, Moss J, Sardinha D, Rajan TV, Zipris D, Mordes JP, Greiner DL, Rossini AA (1997) Expression in BALB/c and C57BL/6 mice of Rt6-1 and Rt6-2 ADP-ribosyltransferases that differ in enzymatic activity: C57BL/6 Rt6-1 is a natural transferase knockout. J Immunol 159:2741–2749

    PubMed  CAS  Google Scholar 

  23. Krebs C, Adriouch S, Braasch F, Koestner W, Leiter EH, Seman M, Lund FE, Oppenheimer N, Haag F, Koch-Nolte F (2005) CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins. J Immunol 174:3298–3305

    PubMed  CAS  Google Scholar 

  24. Ohlrogge W, Haag F, Lohler J, Seman M, Littman DR, Killeen N, Koch-Nolte F (2002) Generation and characterization of ecto-ADP-ribosyltransferase ART2.1/ART2.2-deficient mice. Mol Cell Biol 22:7535–7542. doi:10.1128/MCB.22.21.7535-7542.2002

    Article  PubMed  CAS  Google Scholar 

  25. Humphreys BD, Virginio C, Surprenant A, Rice J, Dubyak GR (1998) Isoquinolines as antagonists of the P2X7 nucleotide receptor: high selectivity for the human versus rat receptor homologues. Mol Pharmacol 54:22–32

    PubMed  CAS  Google Scholar 

  26. Krebs C, Koestner W, Nissen M, Welge V, Parusel I, Malavasi F, Leiter EH, Santella RM, Haag F, Koch-Nolte F (2003) Flow cytometric and immunoblot assays for cell surface ADP-ribosylation using a monoclonal antibody specific for ethenoadenosine. Anal Biochem 314:108–115. doi:10.1016/S0003-2697(02)00640-1

    Article  PubMed  CAS  Google Scholar 

  27. Matthes M, Hollmann C, Bertuleit H, Kuhl M, Thiele HG, Haag F, Koch-Nolte F (1997) “Natural” RT6–1 and RT6–2 “knock-out” mice. Adv Exp Med Biol 419:271–274

    PubMed  CAS  Google Scholar 

  28. Bortell R, Rigby M, Stevens L, Moss J, Kanaitsuka T, Mordes J, Greiner D, Rossini A (1997) Mouse RT6 locus 1 and rat RT6.2 are NAD+. Arginine ADP-ribosyltransferases with auto-ADP-ribosylation activity. Adv Exp Med Biol 419:169–173

    PubMed  CAS  Google Scholar 

  29. Lutz MB (2004) IL-3 in dendritic cell development and function: a comparison with GM-CSF and IL-4. Immunobiology 209:79–87. doi:10.1016/j.imbio.2004.03.001

    Article  PubMed  CAS  Google Scholar 

  30. Dufort FJ, Bleiman BF, Gumina MR, Blair D, Wagner DJ, Roberts MF, Abu-Amer Y, Chiles TC (2007) Cutting edge: IL-4-mediated protection of primary B lymphocytes from apoptosis via Stat6-dependent regulation of glycolytic metabolism. J Immunol 179:4953–4957

    PubMed  CAS  Google Scholar 

  31. Coro ES, Chang WL, Baumgarth N (2006) Type I IFN receptor signals directly stimulate local B cells early following influenza virus infection. J Immunol 176:4343–4351

    PubMed  CAS  Google Scholar 

  32. Feng CG, Zheng L, Jankovic D, Bafica A, Cannons JL, Watford WT, Chaussabel D, Hieny S, Caspar P, Schwartzberg PL, Lenardo MJ, Sher A (2008) The immunity-related GTPase Irgm1 promotes the expansion of activated CD4+ T cell populations by preventing interferon-γ-induced cell death. Nat Immunol 9:1279–1287. doi:10.1038/ni.1653

    Article  PubMed  CAS  Google Scholar 

  33. Nemoto E, Yu Y, Dennert G (1996) Cell surface ADP-ribosyltransferase regulates lymphocyte function-associated molecule-1 (LFA-1) function in T cells. J Immunol 157:3341–3349

    PubMed  CAS  Google Scholar 

  34. Kefalas P, Saxty B, Yadollahi-Farsani M, MacDermot J (1999) Chemotaxin-dependent translocation of immunoreactive ADP-ribosyltransferase-1 to the surface of human neutrophil polymorphs. Eur J Biochem 259:866–871. doi:10.1046/j.1432-1327.1999.00114.x

    Article  PubMed  CAS  Google Scholar 

  35. Grahnert A, Friedrich M, Pfister M, Haag F, Koch-Nolte F, Hauschildt S (2002) Mono-ADP-ribosyltransferases in human monocytes: regulation by lipopolysaccharide. Biochem J 362:717–723. doi:10.1042/0264-6021:3620717

    Article  PubMed  CAS  Google Scholar 

  36. Grahnert A, Friedrich M, Engeland K, Hauschildt S (2005) Analysis of mono-ADP-ribosyltransferase 4 gene expression in human monocytes: splicing pattern and potential regulatory elements. Biochim Biophys Acta 1730:173–186

    PubMed  CAS  Google Scholar 

  37. Ablamunits V, Bridgett M, Duffy T, Haag F, Nissen M, Koch-Nolte F, Leiter H (2001) Changing patterns of cell surface mono (ADP-ribosyl) transferase antigen ART2.2 on resting versus cytopathically-activated T cells in NOD/Lt mice. Diabetologia 44:848–858. doi:10.1007/s001250100559

    Article  PubMed  CAS  Google Scholar 

  38. Moriarty-Craige SE, Jones DP (2004) Extracellular thiols and thiol/disulfide redox in metabolism. Annu Rev Nutr 24:481–509. doi:10.1146/annurev.nutr.24.012003.132208

    Article  PubMed  CAS  Google Scholar 

  39. Yeh MW, Kaul M, Zheng J, Nottet HS, Thylin M, Gendelman HE, Lipton SA (2000) Cytokine-stimulated, but not HIV-infected, human monocyte-derived macrophages produce neurotoxic levels of L-cysteine. J Immunol 164:4265–4270

    PubMed  CAS  Google Scholar 

  40. Balducci E, Micossi LG, Soldaini E, Rappuoli R (2007) Expression and selective up-regulation of toxin-related mono ADP-ribosyltransferases by pathogen-associated molecular patterns in alveolar epithelial cells. FEBS Lett 581:4199–4204. doi:10.1016/j.febslet.2007.07.061

    Article  PubMed  CAS  Google Scholar 

  41. Grahnert A, Richter S, Siegert F, Berndt A, Hauschildt S (2008) The orthologue of the “acatalytic” mammalian ART4 in chicken is an arginine-specific mono-ADP-ribosyltransferase. BMC Mol Biol 9:86. doi:10.1186/1471-2199-9-86

    Article  PubMed  Google Scholar 

  42. Parusel I, Kahl S, Braasch F, Glowacki G, Halverson GR, Reid ME, Schawalder A, Ortolan E, Funaro A, Malavasi F, Hardie D, Halder S, Buckley CD, Haag F, Koch-Nolte F (2005) A panel of monoclonal antibodies recognizing GPI-anchored ADP-ribosyltransferase ART4, the carrier of the Dombrock blood group antigens. Cell Immunol 236:59–65. doi:10.1016/j.cellimm.2005.08.008

    Article  PubMed  CAS  Google Scholar 

  43. Gubin AN, Njoroge JM, Wojda U, Pack SD, Rios M, Reid ME, Miller JL (2000) Identification of the Dombrock blood group glycoprotein as a polymorphic member of the ADP-ribosyltransferase gene family. Blood 96:2621–2627

    PubMed  CAS  Google Scholar 

  44. Paone G, Stevens LA, Levine RL, Bourgeois C, Steagall WK, Gochuico BR, Moss J (2006) ADP-ribosyltransferase-specific modification of human neutrophil peptide-1. J Biol Chem 281:17054–17060. doi:10.1074/jbc.M603042200

    Article  PubMed  CAS  Google Scholar 

  45. Paone G, Wada A, Stevens LA, Matin A, Hirayama T, Levine RL, Moss J (2002) ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci USA 99:8231–8235. doi:10.1073/pnas.122238899

    Article  PubMed  CAS  Google Scholar 

  46. Rodriguez-Garcia M, Oliva H, Climent N, Garcia F, Gatell JM, Gallart T (2007) Human immature monocyte-derived dendritic cells produce and secrete α-defensins 1–3. J Leukoc Biol 82:1143–1146. doi:10.1189/jlb.0507295

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants GM36387 (to G.R.D.), DFG grant No310/6 (to F.H. and F. K-N.), and American Heart Association Fellowship 0715129B (to S.H.).

Disclosures

The authors have no financial conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George R. Dubyak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hong, S., Brass, A., Seman, M. et al. Basal and inducible expression of the thiol-sensitive ART2.1 ecto-ADP-ribosyltransferase in myeloid and lymphoid leukocytes. Purinergic Signalling 5, 369–383 (2009). https://doi.org/10.1007/s11302-009-9162-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-009-9162-2

Keywords

Navigation