Skip to main content
Log in

The isolation of the IGT family genes in Malus × domestica and their expressions in four idiotype apple cultivars

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

IGT family genes share the highly conserved motif GφL-(A/T) IGT in domain II and play an essential role in plant form. The tree architecture of apple (Malus × domestica Borkh.) affects fruit quality and yield. However, little information is available regarding IGT family genes in apple. Apple cultivars of four ideotypes (columnar, tip bearer, spur, and standard) were selected to characterize IGT family genes. Four IGT family members named MdoTAC1a, MdoTAC1b, MdoLAZY1, and MdoLAZY2 were found in the apple genome, sharing four conserved domains. In addition, MdoLAZY1 and MdoLAZY2 contain a fifth domain (EAR motif) at the C-terminus. There was no difference in the coding sequences of each gene in the four cultivars, but several mutated sites were found in their promoters. The four genes displayed lower expression levels in all tested tissues and organs of the columnar cultivar than in the other three cultivars, while expression levels of MdoTAC1a and MdoTAC1b in shoot tips and vegetative buds were highest in the standard cultivar, followed by spur, tip bearing, and columnar cultivars in decreasing order. These results indicate that IGT gene promoters are of great importance in the development of apple tree architecture and lay a theoretical basis for developing gene-specific markers for marker-assisted selection in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Asif M, Trivedi P, Solomos T, Tucker M (2006) Isolation of high-quality RNA from apple (Malus domestica) fruit. J Agric Food Chem 54:5227–5229

    Article  PubMed  CAS  Google Scholar 

  • Bai T, Zhu Y, Fernandez-Fernandez F, Keulemans J, Brown S, Xu K (2012) Fine genetic mapping of the Co locus controlling columnar growth habit in apple. Mol Genet Genomics 287:437–450

    Article  PubMed  CAS  Google Scholar 

  • Bairam E, Delaire M, Le Morvan C, Buck-Sorlin G (2017) Models for predicting the architecture of different shoot types in apple. Front Plant Sci 8:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Baldi P, Wolters PJ, Komjanc M, Viola R, Velasco R, Salvi S (2013) Genetic and physical characterisation of the locus controlling columnar habit in apple (Malus × domestica Borkh.). Mol Breed 31:429–440

    Article  CAS  Google Scholar 

  • Chagne D, Lin-Wang K, Espley RV, Volz RK, How NM, Rouse S, Brendolise C, Carlisle CM, Kumar S, de Silva N, Micheletti D, McGhie T, Crowhurst RN, Storey RD, Velasco R, Hellens RP, Gardiner SE, Allan AC (2013) An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes. Plant Physiol 161:225–239

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Fan X, Song W, Zhang Y, Xu G (2012) Over-expression of OsPIN2 leads to increased tiller numbers, angle and shorter plant height through suppression of OsLAZY1. Plant Biotechnol J 10:139–149

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Zuo X, Shao H, Fan S, Ma J, Zhang D, Zhao C, Yan X, Liu X, Han M (2018) Genome-wide analysis of carotenoid cleavage oxygenase genes and their responses to various phytohormones and abiotic stresses in apple (Malus domestica). Plant Physiol Biochem 123:81–93. https://doi.org/10.1016/j.plaphy.2017.12.001

    Article  PubMed  CAS  Google Scholar 

  • Cheng X, Ruyterspira C, Bouwmeester H (2013) The interaction between strigolactones and other plant hormones in the regulation of plant development. Front Plant Sci 4:199–199

    Article  PubMed  PubMed Central  Google Scholar 

  • Dardick C et al (2013) PpeTAC1 promotes the horizontal growth of branches in peach trees and is a member of a functionally conserved gene family found in diverse plants species. Plant J 75:618–630

    Article  PubMed  CAS  Google Scholar 

  • Dardick CD, Scorza R, Hollender CA (2017) Functional analysis of LAZY1 in Arabidopsis thaliana and Prunus trees. vol US20170088846A1. United States Patent Application Publication, US

  • Dong Z, Jiang C, Chen X, Zhang T, Ding L, Song W, Luo H, Lai J, Chen H, Liu R, Zhang X, Jin W (2013) Maize LAZY1 mediates shoot gravitropism and inflorescence development through regulating auxin transport, auxin signaling, and light response. Plant Physiol 163:1306–1322

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dougherty L, Singh R, Brown S, Dardick C, Xu K (2018) Exploring DNA variant segregation types in pooled genome sequencing enables effective mapping of weeping trait in Malus. J Exp Bot 69:1499–1516. https://doi.org/10.1093/jxb/erx490

    Article  PubMed  Google Scholar 

  • Doyle J (1986) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Guseman JM, Dardick C (2018) Branch angle responses to photosynthesis are partially dependent on TILLER ANGLE CONTROL 1. bioRxiv. https://doi.org/10.1101/251017

  • Guseman JM, Webb K, Srinivasan C, Dardick C (2017) DRO1 influences root system architecture in Arabidopsis and Prunus species. Plant J 89:1093–1105

    Article  PubMed  CAS  Google Scholar 

  • Han M, Sun Q, Zhou J, Qiu H, Guo J, Lu L, Mu W, Sun J (2017) Insertion of a solo LTR retrotransposon associates with spur mutations in ‘Red Delicious’ apple (Malus × domestica). Plant Cell Rep 36:1375–1385

    Article  PubMed  CAS  Google Scholar 

  • Hollender CA, Dardick C (2015) Molecular basis of angiosperm tree architecture. New Phytol 206:541–556

    Article  PubMed  Google Scholar 

  • Hou X, Guo Q, Wei W, Guo L, Guo D, Zhang L (2018) Screening of genes related to early and late flowering in tree peony based on bulked segregant RNA sequencing and verification by quantitative real-time PCR. Molecules 23:689

    Article  CAS  Google Scholar 

  • Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics (Oxford, England) 31:1296–1297

    Article  Google Scholar 

  • Jiang J, Tan L, Zhu Z, Fu Y, Liu F, Cai H, Sun C (2012) Molecular evolution of the TAC1 gene from rice (Oryza sativa L.). J Genet Genomics 39:551–560

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Bassett C, Bielenberg DG, Cheng CH, Dardick C, Main D, Meisel L, Slovin J, Troggio M, Schaffer RJ (2015) A standard nomenclature for gene designation in the Rosaceae. Tree Genet Genomes 11:108

    Article  Google Scholar 

  • Ku L, Wei X, Zhang S, Zhang J, Guo S, Chen Y (2011) Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.). PLoS One 6:e20621. https://doi.org/10.1371/journal.pone.0020621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Lapins K (1965) Compact mutants of apple induced by ionizing radiation. Can J Plant Sci 45:117–124

    Article  Google Scholar 

  • Lespinasse Y, Roussellebourgeois F, Rousselle P (1992) Breeding apple tree: aims and methods. In: Proceedings of the Joint Conference of the EAPR Breeding & Varietal Assessment Section and the EUCARPIA Potato Section, Landerneau, France, 12–17 January 1992. pp 103–110

  • Li P, Wang Y, Qian Q, Fu Z, Wang M, Zeng D, Li B, Wang X, Li J (2007) LAZY1 controls rice shoot gravitropism through regulating polar auxin transport. Cell Res 17:402–410

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−delta delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  PubMed  CAS  Google Scholar 

  • Nordstrom A, Tarkowski P, Tarkowska D, Norbaek R, Astot C, Dolezal K, Sandberg G (2004) Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: a factor of potential importance for auxin-cytokinin-regulated development. Proc Natl Acad Sci U S A 101:8039–8044

    Article  PubMed  PubMed Central  Google Scholar 

  • Otto D, Petersen R, Brauksiepe B, Braun P, Schmidt ER (2014) The columnar mutation (“Co gene”) of apple (Malus × domestica) is associated with an integration of a Gypsy-like retrotransposon. Mol Breed 33:863–880

    Article  CAS  Google Scholar 

  • Petersen R, Krost C (2013) Tracing a key player in the regulation of plant architecture: the columnar growth habit of apple trees (Malus × domestica). Planta 238:1–22

    Article  PubMed  CAS  Google Scholar 

  • Reese MG (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26:51–56

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Kuhlemeier C (2002) Plant architecture. EMBO Rep 3:846–851

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Robert X, Gouet P (2014) Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42:W320–W324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roberts JA (2006) Tropic responses of hypocotyls from normal tomato plants and the gravitropic mutant Lazy-1. Plant Cell Environ 7:515–520

    Google Scholar 

  • Segura V, Denance C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tan M, Li G, Qi S, Liu X, Chen X, Ma J, Zhang D, Han M (2018) Identification and expression analysis of the IPT and CKX gene families during axillary bud outgrowth in apple (Malus domestica Borkh.). Gene 651:106–117

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Furutani M, Nishimura T, Nakamura M, Fushita T, Iijima K, Baba K, Tanaka H, Toyota M, Tasaka M, Morita MT (2017) The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29:1984–1999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teichmann T, Muhr M (2015) Shaping plant architecture. Front Plant Sci 6:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Tworkoski T, Miller S, Scorza R (2006) Relationship of pruning and growth morphology with hormone ratios in shoots of pillar and standard peach trees. J Plant Growth Regul 25:145–155

    Article  CAS  Google Scholar 

  • Tyree MT, Ewers FW (2010) The hydraulic architecture of trees and other woody plants. New Phytol 119:345–360

    Article  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Kitomi Y, Inukai Y, Ono K, Kanno N, Inoue H, Takehisa H, Motoyama R, Nagamura Y, Wu J, Matsumoto T, Takai T, Okuno K, Yano M (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat Genet 45:1097–1102

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D, Salvi S, Pindo M, Baldi P, Castelletti S, Cavaiuolo M, Coppola G, Costa F, Cova V, Dal Ri A, Goremykin V, Komjanc M, Longhi S, Magnago P, Malacarne G, Malnoy M, Micheletti D, Moretto M, Perazzolli M, Si-Ammour A, Vezzulli S, Zini E, Eldredge G, Fitzgerald LM, Gutin N, Lanchbury J, Macalma T, Mitchell JT, Reid J, Wardell B, Kodira C, Chen Z, Desany B, Niazi F, Palmer M, Koepke T, Jiwan D, Schaeffer S, Krishnan V, Wu C, Chu VT, King ST, Vick J, Tao Q, Mraz A, Stormo A, Stormo K, Bogden R, Ederle D, Stella A, Vecchietti A, Kater MM, Masiero S, Lasserre P, Lespinasse Y, Allan AC, Bus V, Chagné D, Crowhurst RN, Gleave AP, Lavezzo E, Fawcett JA, Proost S, Rouzé P, Sterck L, Toppo S, Lazzari B, Hellens RP, Durel CE, Gutin A, Bumgarner RE, Gardiner SE, Skolnick M, Egholm M, van de Peer Y, Salamini F, Viola R (2010) The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet 42:833–839

    Article  PubMed  CAS  Google Scholar 

  • Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C (2013) D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25:1674–1688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wilson BF (2000) Apical control of branch growth and angle in woody plants. Am J Bot 87:601–607

    Article  PubMed  CAS  Google Scholar 

  • Wilson SJ, Jarassamrit N (1994) Nursery factors influencing lateral shoot development in a spur type apple cultivar. Sci Hortic (Amsterdam) 56:207–215

    Article  Google Scholar 

  • Wolters PJ, Schouten HJ, Velasco R, Si-Ammour A, Baldi P (2013) Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase. New Phytol 200:993–999

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki K, Okabe M, Takahashi E (1987) Inheritance of some characteristics and breeding of new hybrids in flowering peaches. Bulletin of the Kanagawa Horticultural Experiment Station 34:46–53

    Google Scholar 

  • Yoshihara T, Iino M (2007) Identification of the gravitropism-related rice gene LAZY1 and elucidation of LAZY1-dependent and -independent gravity signaling pathways. Plant Cell Physiol 48:678–688

    Article  PubMed  CAS  Google Scholar 

  • Yoshihara T, Spalding EP (2017) LAZY genes mediate the effects of gravity on auxin gradients and plant architecture. Plant Physiol 175:959–969

    PubMed  PubMed Central  CAS  Google Scholar 

  • Yoshihara T, Spalding EP, Iino M (2013) AtLAZY1 is a signaling component required for gravitropism of the Arabidopsis thaliana inflorescence. Plant J 74:267–279

    Article  PubMed  CAS  Google Scholar 

  • You CX, Zhao Q, Wang XF, Xie XB, Feng XM, Zhao LL, Shu HR, Hao YJ (2014) A dsRNA-binding protein MdDRB1 associated with miRNA biogenesis modifies adventitious rooting and tree architecture in apple. Plant Biotechnol J 12:183–192

    Article  PubMed  CAS  Google Scholar 

  • Yu B, Lin Z, Li H, Li X, Li J, Wang Y, Zhang X, Zhu Z, Zhai W, Wang X, Xie D, Sun C (2007) TAC1, a major quantitative trait locus controlling tiller angle in rice. Plant J 52:891–898

    Article  PubMed  CAS  Google Scholar 

  • Yue S, Liu P, Zeng M, Wang W, Wang X (2012) Protomer region of super sweet corn bt2 gene and development of molecular marker-assisted selection. NW J A&F Univ 40:73–78

    Google Scholar 

  • Zhao H, Huai Z, Xiao Y, Wang X, Yu J, Ding G, Peng J (2014) Natural variation and genetic analysis of the tiller angle gene MsTAC1 in Miscanthus sinensis. Planta 240:161–175

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Bennet McComish, PhD, from Liwen Bianji, Edanz Editing China (www.liwenbianji.cn/ac), for editing the English text of a draft of this manuscript. This study was supported by the National Natural Science Foundation of China (Project No. 31672109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuandi Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

Sequence data has been deposited in the NCBI BankIt Database and has been made accessible using submission ID (2081437).

Additional information

Communicated by D. B. Neale

Electronic supplementary material

Figure S1

(DOCX 288 kb)

Figure S2

(DOCX 2528 kb)

Figure S3

(DOCX 716 kb)

Table S1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Cai, W., Du, C. et al. The isolation of the IGT family genes in Malus × domestica and their expressions in four idiotype apple cultivars. Tree Genetics & Genomes 14, 46 (2018). https://doi.org/10.1007/s11295-018-1258-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1258-9

Keywords

Navigation