Skip to main content

Advertisement

Log in

Transcriptome sequencing analysis of two different genotypes of Asian pear reveals potential drought stress genes

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

‘Huangguan’ (HG) and ‘Whangkeumbae’ (HK) pears are two important Asian pear cultivars in China and South Korea, respectively. In practical production, ‘Huangguan’ pear is a drought-tolerant genotype while ‘Whangkeumbae’ pear is drought-sensitive. To uncover the mechanisms underlying pear tree tolerance to drought stress, a comprehensive transcriptome analysis was performed in this study. The results revealed a total of 1185 and 1667 differently expressed genes (DEGs) between control and treated plants of HG and HK pear, respectively. KEGG pathways enrichment analysis revealed that the DEGs were involved in the metabolism and signal transduction of various phytohormones. In HG, the DEGs annotated as ABA, gibberellic acid (GA), and salicylic acid (SA) were all upregulated, while those DEGs annotated as jasmonic acid (JA) were upregulated or downregulated. In HK, the DEGs annotated as ABA and JA were both upregulated or downregulated, but there were no DEGs annotated as GA and SA. In addition, there were 743 DEGs expressed in HG, but not in HK. Among them, there were 288 DEGs whose absolute values of log2(fold-change ratio) were greater than 2. Eight of the 288 DEGs were selected randomly for validating the reproducibility and accuracy of the transcriptome RNA-Seq data by using quantitative-PCR. Our results will be helpful for breeding drought-tolerant pear cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  PubMed  CAS  Google Scholar 

  • Audic S and Claverie J M (1997). The significance of digital gene expression profiles. Genome Res 7(10):986–995

  • Bi HH, Luang S, Li Y, Bazanova N, Borisjuk N, Hrmova M, Lopato S (2017) Wheat drought-responsive WXPL transcription factors regulate cuticle biosynthesis genes. Plant Mol Biol 94:15–32

    Article  PubMed  CAS  Google Scholar 

  • Bowles D, Lim EK, Poppenberger B, Vaistij FE (2006) Glycosyl transferases of lipophilic small molecules. Annu Rev Plant Biol 57:567–597

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Fan L, Du Y, Zhu WN, Tang ZQ, Li N, Zhang DP, Zhang LS (2016) Temporal and spatial expression and function of TaDlea3 in Triticum aestivum during developmental stages under drought stress. Plant Sci 252:290–299

    Article  PubMed  CAS  Google Scholar 

  • Chidambaranathan P, Jagannadham PTK, Satheesh V, Kohli D, Basavarajappa SH, Chellapilla B, Kumar J, Jain PK, Srinivasan R (2017) Genome-wide analysis identifies chickpea (Cicer arietinum) heat stress transcription factors (Hsfs) responsive to heat stress at the pod development stage. J Plant Res. https://doi.org/10.1007/s10265-017-0948-y

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21(18):3674–3676

    Article  PubMed  CAS  Google Scholar 

  • Dwivedi SK, Arora A, Kumar S (2017) Paclobutrazol-induced alleviation of water-deficit damage in relation to photosynthetic characteristics and expression of stress markers in contrasting wheat genotypes. Photosynthetica 55:351–359

    Article  CAS  Google Scholar 

  • Fei Y, Xue YX, Du PX, Yang SS, Deng XP (2017) Expression analysis and promoter methylation under osmotic and salinity stress of TaGAPC1 in wheat (Triticum aestivum L). Protoplasma 254:987–996

    Article  PubMed  CAS  Google Scholar 

  • Furuki T and Sakurai M (2014) Group 3 LEA protein model peptides protect liposomes during desiccation. Biochim Biophys Acta 1838(11):2757–2766

  • Gapper NE, Rudell DR, Giovannoni JJ, Watkins CB (2013) Biomarker development for external CO2 injury prediction in apples through exploration of both transcriptome and DNA methylation changes. AoB PLANTS 5:plt021. https://doi.org/10.1093/aobpla/plt021

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giorgi F and Lionello P (2008) Climate change projections for the mediterranean region. Glob Planet Chang 63(2):90–104

  • Hussain S, Niu QF, Qian MJ, Bai SL, Teng YW (2015) Genome-wide identification, characterization, and expression analysis of the dehydrin gene family in Asian pear (Pyrus pyrifolia). Tree Genet Genomes 11:110

    Article  Google Scholar 

  • Hwang IG, Kim HY, Woo KS, Lee SH, Lee J, Jeong HS (2013) Isolation and identification of the antioxidant DDMP from heated pear (Pyrus pyrifolia Nakai). Prev Nutr Food Sci 18:76–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Isaura Castro, Olinda Pinto-Carnide, Jesús M. Ortiz, Vanessa Ferreira and Juan P. Martín (2016) A comparative analysis of genetic diversity in portuguese grape germplasm from ampelographic collections fit for quality wine production. Span J Agric Res 14(4):e0712

  • Lairson LL, Henrissat B, Davies GJ, Withers SG (2008) Glycosyl transferases: structures, functions, and mechanisms. Annu Rev Biochem 77:521–555

    Article  PubMed  CAS  Google Scholar 

  • Li RQ, Yu C, Li YR, Tak-Wah L, Yiu SM, Karsten K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Li T, Li XY, Tan DM, Jiang ZY, Wei Y, Li J, Du G, Wang AD (2014) Distinct expression profiles of ripening related genes in the ‘Nanguo’ pear (Pyrus ussuriensis) fruits. Sci Hortic 171:78–82

    Article  CAS  Google Scholar 

  • Li YJ, Wang B, Dong RR, Hou BK (2015) AtUGT76C2, an Arabidopsis cytokinin glycosyl transferase is involved in drought stress adaptation. Plant Sci 236:157–167

    Article  PubMed  CAS  Google Scholar 

  • Li KQ, Xu XY, Huang XS (2016) Identification of differentially expressed genes related to dehydration resistance in a highly drought-tolerant pear, Pyrus betulaefolia, as through RNA-Seq. PLoS One 11:e0149352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu XK, Wang XG, Chen XG, Shu N, Wang JJ, Wang DL, Wang S, Fan WL, Guo LX, Guo XN, Ye WW (2017) Single-base resolution methylomes of upland cotton (Gossypium hirsutum L.) reveal epigenome modifications in response to drought stress. BMC Genomics 18:297

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance-different tiers of regulation. J Plant Physiol 171:486–496

    Article  PubMed  CAS  Google Scholar 

  • Mittal D, Chakrabarti S, Sarkar A, Singh A, Grover A (2009) Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol Biochem 47:785–795

    Article  PubMed  CAS  Google Scholar 

  • Morandi B, Losciale P, Manfrini L, Zibordi M, Anconelli S, Galli F, Pierpaoli E, Grappadelli LC (2014) Increasing water stress negatively affects pear fruit growth by reducing first its xylem and then its phloem inflow. J Plant Physiol 171:1500–1509

    Article  PubMed  CAS  Google Scholar 

  • Mortazavi A, Williams BA, Mccue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5(7):621–628

    Article  PubMed  CAS  Google Scholar 

  • Murgia I, Tarantino D, Soave C, Morandini P (2011) Arabidopsis CYP82C4 expression is dependent on Fe availability and circadian rhythm, and correlates with genes involved in the early Fe deficiency response. J Plant Physiol 168:894–902

    Article  PubMed  CAS  Google Scholar 

  • Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756–772

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peng XJ, Wu QQ, Teng LH, Teng LH, Tang F, Pi Z, Shen SH (2015) Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors. BMC Plant Biol 15:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Santo SD, Palliotti A, Zenoni S, Tornielli GB, Fasoli M, Paci P, Tombesi S, Frioni T, Silvestroni O, Bellincontro A, d’Onofrio C, Matarese F, Gatti M, Poni S, Pezzotti M (2016) Distinct transcriptome responses to water limitation in isohydric and anisohydric grapevine cultivars. BMC Genomics 17:815

    Article  Google Scholar 

  • Schopfer C R and Ebel J (1998) Identification of elicitor-induced cytochrome P450s of soybean (glycine max L.) using differential display of mRNA. Mol Gen Genet 258(4):315–322

  • Shao HB, Jiang SY, Li FM, Chu LY, Zhao CX, Shao MA, Zhao XN, Li F (2007) Some advances in plant stress physiology and their implications in the systems biology era. Colloid Surf B 54:33–36

    Article  CAS  Google Scholar 

  • Shinozaki K and Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58(2):221–227

  • Singh A, Jha SK, Bagri J, Pandey GK (2015) ABA inducible rice protein phosphatase 2C confers ABA insensitivity and abiotic stress tolerance in Arabidopsis. PLoS One 10:e0125168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS One 5:e13935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sreenivasulu N, Harshavardhan VT, Govind G, Seiler C, Kohli A (2012) Contrapuntal role of ABA: does it mediate stress tolerance or plant growth retardation under long-term drought stress? Gene 506:265–273

    Article  PubMed  CAS  Google Scholar 

  • Struthers R, Ivanova A, Tits L, Swennen R, Coppin P (2015) Thermal infrared imaging of the temporal variability in stomatal conductance for fruit trees. Intl J Appl Earth Obs Geoinf 39:9–17

    Article  Google Scholar 

  • Tang XM, Tao X, Wang Y, Ma DW, Li D, Yang H, Ma XR (2014) Analysis of DNA methylation of perennial ryegrass under drought using the methylation-sensitive amplification polymorphism (MSAP) technique. Mol Gen Genomics 289:1075–1084

    Article  CAS  Google Scholar 

  • Tognetti VB, Van Aken O, Morreel K, Vandenbroucke K, van de Cotte B, De Clercq I, Chiwocha S, Fenske R, Prinsen E, Boerjan W, Genty B, Stubbs KA, Inzé D, Breusegem FV (2010) Perturbation of indole-3-butyric acid homeostasis by the UDP-glucosyltransferase UGT74E2 modulates Arabidopsis architecture and water stress tolerance. Plant Cell 22:2660–2679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veeranagamallaiah G, Prasanthi J, Reddy K E, Pandurangaiah M, Babu O S and Sudhakar C (2011) Group 1 and 2 LEA protein expression correlates with a decrease in water stress induced protein aggregation in horsegram during germination and seedling growth. J Plant Physiol 168(7):671–677

  • Wang X, Li Y, Ji W, Bai X, Cai H, Zhu D, Sun XL, Chen LJ, Zhu YM (2011) A novel Glycine soja tonoplast intrinsic protein gene responds to abiotic stress and depresses salt and dehydration tolerance in transgenic Arabidopsis thaliana. J Plant Physiol 168:1241–1248

    Article  PubMed  CAS  Google Scholar 

  • Wang LL, Chen AP, Zhong NQ, Liu N, Wu XM, Wang F, Yang CL, Romero MF, Xia GX (2014) The Thellungiella salsuginea tonoplast aquaporin TsTIP1;2 functions in protection against multiple abiotic stresses. Plant Cell Physiol 55:148–161

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, Zhu SL, Khan MA, Tao ST, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi K, Huang X, Wang Y, Zhao X, Wu J, Deng C, Gou C, Zhou W, Yin H, Qin G, Sha Y, Tao Y, Chen H, Yang Y, Song Y, Zhan D, Wang J, Li L, Dai M, Gu C, Wang Y, Shi D, Wang X, Zhang H, Zeng L, Zheng D, Wang C, Chen M, Wang G, Xie L, Sovero V, Sha S, Huang W, Zhang S, Zhang M, Sun J, Xu L, Li Y, Liu X, Li Q, Shen J, Wang J, Paull RE, Bennetzen JL, Wang J, Zhang S (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu J, Wang LF, Li L, Wang S (2014) De novo assembly of the common bean transcriptome using short reads for the discovery of drought-responsive genes. PLoS One 9:e109262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xiao Gan and Réka Albert (2016). Analysis of a dynamic model of guard cell signaling reveals the stability of signal propagation. BMC Syst Biol 10(1):78

  • Xin S, Yu G, Sun L, Qiang X, Xu N, Cheng X (2014) Expression of tomato SlTIP2;2 enhances the tolerance to salt stress in the transgenic Arabidopsis and interacts with target proteins. J Plant Res 127:695–708

    Article  PubMed  CAS  Google Scholar 

  • Xu YY, Li H, Lin J, Li XG, Chang YH (2015) Isolation and characterization of Calcineurin B-like gene (PbCBL1) and its promoter in birch-leaf pear (Pyrus betulifolia Bunge). Gene Mol Res 14:16756–16770

    Article  CAS  Google Scholar 

  • Zhang JH, Jia WS, Yang JC, Abdelabgi MI (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119

    Article  Google Scholar 

  • Zhang D, Tong J, He X, Xu Z, Xu L, Wei P et al (2016) A novel soybean intrinsic protein gene, GmTIP2;3, involved in responding to osmotic stress. Front Plant Sci 6:1237

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This project was financially supported by the earmarked fund for the China Agriculture Research System (CARS-29-14) and the Natural Science Research Fund of Higher Education Institutions, Anhui Province (KJ2016A237).

Author information

Authors and Affiliations

Authors

Contributions

HW and ZYW designed and performed the experiment, analyzed the data, drew figures, and wrote the manuscript; MZ, BJ, WH, and ZFY helped in implementing the experiments. LWZ and XNX were supervisors for experiment planning and revised the manuscript. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Liwu Zhu or Xiaoniu Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Data archiving statement

The sequence data has been deposited in the National Center for Biotechnology Information (NCBI) Short Read Archive (SPA) under accession number SRP125844.

Additional information

Communicated by D. Chagné

Electronic supplementary material

ESM 1

(DOCX 2.09 MB)

ESM 2

(DOCX 12.4 KB)

ESM 3

(DOCX 11.7 KB)

ESM 4

(DOCX 13.9 KB)

ESM 5

(DOCX 13.8 KB)

ESM 6

(DOCX 13.9 KB)

ESM 7

(DOCX 14.2 KB)

ESM 8

(DOCX 13.9 KB)

ESM 9

(DOCX 13.8 KB)

ESM 10

(DOCX 12.9 KB)

ESM 11

(DOCX 13.3 KB)

ESM 12

(DOCX 13.2 KB)

ESM 13

(DOCX 15.2 KB)

ESM 14

(DOCX 15.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, Z., Zhang, M. et al. Transcriptome sequencing analysis of two different genotypes of Asian pear reveals potential drought stress genes. Tree Genetics & Genomes 14, 40 (2018). https://doi.org/10.1007/s11295-018-1249-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1249-x

Keywords

Navigation