Skip to main content
Log in

Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Pummelo (Citrus grandis) is one of the most important gene pools for citrus breeding programmes. A high-density linkage map is a valuable tool for functional genomics and genetic breeding studies. A newly developed genome sequence-based marker technology, restriction site-associated DNA (RAD) sequencing, has proven to be powerful for the rapid discovery and genotyping of genome-wide SNP markers and for the high-density genetic map construction. We present the construction of a high-density genetic map of pummelo using RAD sequencing. An F1 population of 124 individuals and its parents (‘Pingshan’ pummelo and ‘Guanxi’ pummelo) were applied to the map construction. One thousand five hundred forty three high-quality single nucleotide polymorphism (SNP) markers were developed and mapped to nine linkage groups. In addition, 20 simple sequence repeat (SSR) markers were included and showed general consistency with the SNP markers. These 1563 markers constituted a total genetic length of 976.58 cM and an average of 0.62 cM between adjacent loci. The number of markers within each linkage group (LG) ranged from 81 (for LG4) to 285 (for LG2). A comparison of the genetic maps to the published sweet orange (Citrus sinensis) genome revealed both conservation and variations. The alignment of the LGs from this map was also shown in comparison with a previously genetic linkage map from pummelo. This study showed that the RAD sequencing allowed the rapid discovery of a large number of SNPs in the pummelo. The SNP-based high-density genetic map for pummelo was successfully generated by using these designed SNP markers. The completed genetic map is a valuable resource for further pummelo genetic studies and provides useful information for gene positional cloning, MAS breeding and C. grandis genome assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad R, Struss D, Southwick SM (2003) Development and characterization of microsatellite markers in citrus. J Am Soc Hortic Sci 128:584–590

    CAS  Google Scholar 

  • Argout X, Salse J, Aury JM, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Bérard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma ZR, Zhang YF, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43:101–108

    Article  CAS  PubMed  Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS One 3:e3376

  • Barchi L, Lanteri S, Portis E, Acquadro A, Vale G, Toppino L, Rotino G (2011) Identification of SNP and SSR markers in eggplant using RAD tag sequencing. BMC Genomics 12:304

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Barkley N, Roose M, Krueger R, Federici C (2006) Assessing genetic diversity and population structure in a citrus germplasm collection utilizing simple sequence repeat markers (SSRs). Theor Appl Genet 112:1519–1531

    Article  CAS  PubMed  Google Scholar 

  • Bernet GP, Fernandez-Ribacoba J, Carbonell EA, Asins MJ (2010) Comparative genome-wide segregation analysis and map construction using a reciprocal cross design to facilitate citrus germplasm utilization. Mol Breed 25:659–673

    Article  Google Scholar 

  • Brookes AJ (1999) The essence of SNPs. Gene 234:177–186

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Guy CL, Moore GA (1994) Extension of the linkage map in Citrus using random amplified polymorphic DNA (RAPD) markers and RFLP mapping of cold-acclimation-responsive loci. Theor Appl Genet 89:606–614

    Article  CAS  PubMed  Google Scholar 

  • Chagné D, Batley J, Edwards D, Forster JW (2007) Single nucleotide polymorphism genotyping in plants. In: Association mapping in plants. Springer, pp 77–94

  • Chen CX, Bowman KD, Chio YA, Dang PM, Rao MN, Huang S, Soneji JR, McCollum TG, Gmitter FG (2008) EST-SSR genetic maps for Citrus sinensis and Poncirus trifoliata. Tree Genet Genome 4:1–10

    Article  Google Scholar 

  • Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177–178

    Article  Google Scholar 

  • Chutimanitsakun Y, Nipper RW, Cuesta-Marcos A, Cistué L, Corey A, Filichkina T, Johnson EA, Hayes PM (2011) Construction and application for QTL analysis of a restriction site associated DNA (RAD) linkage map in barley. BMC Genomics 12:4

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corazza-Nunes M, Machado M, Nunes W, Cristofani M, Targon M (2002) Assessment of genetic variability in grapefruits (Citrus paradisi Macf.) and pummelos (C. maxima (Burm.) Merr.) using RAPD and SSR markers. Euphytica 126:169–176

    Article  CAS  Google Scholar 

  • Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510

    Article  CAS  PubMed  Google Scholar 

  • Durham RE, Liou PC, Gmitter FG, Moore GA (1992) Linkage of restriction fragment length polymorphisms and isozymes in Citrus. Theor Appl Genet 84:39–48

    Article  CAS  PubMed  Google Scholar 

  • Fujii H, Shimada T, Nonaka K, Kita M, Kuniga T, Endo T, Ikoma Y, Omura M (2013) High-throughput genotyping in citrus accessions using an SNP genotyping array. Tree Genet Genome 9:145–153

    Article  Google Scholar 

  • García-Lor A, Luro F, Navarro L, Ollitrault P (2012) Comparative use of InDel and SSR markers in deciphering the interspecific structure of cultivated citrus genetic diversity: a perspective for genetic association studies. Mol Genet Genomics 287:77–94

    Article  PubMed  Google Scholar 

  • Garnsey S, Su H, Tsai M (1996) Differential susceptibility of pummelo and Swingle citrumelo to isolates of citrus tristeza virus. In: Proceedings of the 13th Conference of the International Organization of Citrus Virologists, Riverside, CA: IOCV, pp 138–146

  • Gaur R, Azam S, Jeena G, Khan AW, Choudhary S, Jain M, Yadav G, Tyagi AK, Chattopadhyay D, Bhatia S (2012) High-throughput SNP discovery and genotyping for constructing a saturated linkage map of chickpea (Cicer arietinum L.). DNA Res 19:357–373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gmitter FG, Soneji JR, Rao MN (2009) Citrus breeding. In: Breeding plantation tree crops: temperate species. Springer, pp 105–134

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed Central  CAS  PubMed  Google Scholar 

  • Grosser JW, Medina-Urrutia V, Ananthakrishnan G, Serrano P (2004) Building a replacement sour orange rootstock: somatic hybridization of selected mandarin + pummelo combinations. J Am Soc Hortic Sci 129:530–534

    Google Scholar 

  • Han YH, Khu DM, Monteros M (2012) High-resolution melting analysis for SNP genotyping and mapping in tetraploid alfalfa (Medicago sativa L.). Mol Breed 29:489–501

    Article  PubMed Central  PubMed  Google Scholar 

  • Hirakawa H, Shirasawal K, Ohyama A, Fukuoka H, Aoki K, Rothan C, Sato S, Isobe S, Tabata S (2013) Genome-wide SNP genotyping to infer the effects on gene functions in tomato. DNA Res 20:221–233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XM, Quigg RJ, Zhou J, Xu SZ, Masinde G, Mohan S, Baylink DJ (2006) A critical evaluation of the effect of population size and phenotypic measurement on QTL detection and localization using a large F2 murine mapping population. Genet Mol Biol 29:166–173

    Article  CAS  Google Scholar 

  • Li RQ, Li YR, Fang XD, Yang HM, Wang J, Kristiansen K, Wang J (2009a) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124–1132

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li RQ, Yu C, Li YR, Lam TW, Yiu SM, Kristiansen K, Wang J (2009b) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25:1966–1967

    Article  CAS  PubMed  Google Scholar 

  • Liu YZ, Deng XX (2007) Citrus breeding and genetics in China. Asian Australas J Plant Sci Biotechnol 1:23–28

    Google Scholar 

  • Luro F, Laigret F, Lorieux M, Ollitrault P (1996) Citrus genome mapping with molecular markers: two maps obtained by segregation analysis of progeny of one intergeneric cross. In: Proc Intl Soc Citricult, pp 862–866

  • Nicolosi E, Deng Z, Gentile A, La Malfa S, Continella G, Tribulato E (2000) Citrus phylogeny and genetic origin of important species as investigated by molecular markers. Theor Appl Genet 100:1155–1166

    Article  CAS  Google Scholar 

  • Ollitrault P, Dambier D, Luro F, Duperray C (1994) Nuclear genome size variations in citrus. Fruits 49:475–476

    Google Scholar 

  • Ollitrault P, Terol J, Chen CX, Federici CT, Lotfy S, Hippolyte I, Ollitrault F, Bérard A, Chauveau A, Cuenca J, Costantino G, Kacar Y, Mu L, Garcia-Lor A, Froelicher Y, Aleza P, Boland A, Billot C, Navarro L, Luro F, Roose ML, Gmitter FG, Talon M, Brunel D (2012) A reference genetic map of C. clementina hort. ex Tan.; citrus evolution inferences from comparative mapping. BMC Genomics 13:593

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ramón-Laca L (2003) The introduction of cultivated citrus to Europe via Northern Africa and the Iberian Peninsula. Econ Bot 57:502–514

    Article  Google Scholar 

  • Ruiz C, Paz Breto M, Asíns MJ (2000) A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112:89–94

    Article  CAS  Google Scholar 

  • Sankar AA, Moore GA (2001) Evaluation of inter-simple sequence repeat analysis for mapping in Citrus and extension of the genetic linkage map. Theor Appl Genet 102:206–214

  • Scaglione D, Acquadro A, Portis E, Tirone M, Knapp S, Lanteri S (2012) RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics 13:3

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shulaev V, Sargent DJ, Crowhurst RN, Mockler TC, Folkerts O, Delcher AL, Jaiswal P, Mockaitis K, Liston A, Mane SP, Burns P, Davis TM, Slovin JP, Bassil N, Hellens RP, Evans C, Harkins T, Kodira C, Desany B, Crasta OR, Jensen RV, Allan AC, Michael TP, Setubal JC, Celton JM, Rees DJG, Williams KP, Holt SH, Rojas JJR, Chatterjee M, Liu B, Silva H, Meisel L, Adato A, Filichkin SA, Troggio M, Viola R, Ashman TL, Wang H, Dharmawardhana P, Elser J, Raja R, Priest HD, Bryant DW Jr, Fox SE, Givan SA, Wilhelm LJ, Naithani S, Christoffels A, Salama DY, Carter J, Girona EL, Zdepski A, Wang WQ, Kerstetter RA, Schwab W, Korban SS, Davik J, Monfort A, Denoyes-Rothan B, Arus P, Mittler R, Flinn B, Aharoni A, Bennetzen JL, Salzberg SL, Dickerman AW, Velasco R, Borodovsky M, Veilleux RE, Folta KM (2010) The genome of woodland strawberry (Fragaria vesca). Nat Genet 43:109–116

    Article  PubMed Central  PubMed  Google Scholar 

  • Soost R, Cameron J (1975) Citrus. Advances in fruit breeding, pp 507–540

  • Terol J, Naranjo MA, Ollitrault P, Talon M (2008) Development of genomic resources for Citrus clementina: characterization of three deep-coverage BAC libraries and analysis of 46,000 BAC end sequences. BMC Genomics 9:423

    Article  PubMed Central  PubMed  Google Scholar 

  • Van OJ (2006) JoinMap 4 Software for the calculation of genetic linkage maps in experimental populations Kyazma BV, Wageningen, Netherlands

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wai CM (2013) Development of Pineapple (Ananas comosus L.) Genetic map with restriction site associated DNA (RAD) markers. In: Plant and Animal Genome XXII Conference, Plant and Animal Genome, San Diego, CA, pp 452

  • Wang N, Fang LC, Xin HP, Wang LJ, Li SH (2012a) Construction of a high-density genetic map for grape using next generation restriction-site associated DNA sequencing. BMC Plant Bio 12:148

    Article  CAS  Google Scholar 

  • Wang WX, Huang S, Liu YM, Fang ZY, Yang LM, Hua W, Yuan SX, Liu SY, Sun JF, Zhuang M, Zhang YY, Zeng AS (2012b) Construction and analysis of a high-density genetic linkage map in cabbage (Brassica oleracea L. var. capitata). BMC Genomics 13:523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ward JA, Bhangoo J, Fernández-Fernández F, Moore P, Swanson JD, Viola R, Velasco R, Bassil N, Weber CA, Sargent DJ (2013) Saturated linkage map construction in Rubus idaeus using genotyping by sequencing and genome-independent imputation. BMC Genomics 14:2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Weber CA, Moore GA (2003) Mapping freeze tolerance quantitative trait loci in a Citrus grandis×Poncirus trifoliata F1 pseudo-testcross using molecular markers. J Am Soc Hortic Sci 128:508–514

  • Wu J, Wang ZW, Shi ZB, Zhang S, Ming R, Zhu SL, Khan MA, Tao ST, Korban SS, Wang H, Chen NJ, Nishio T, Xu X, Cong L, Qi KJ, Huang XS, Wang YT, Zhao X, Wu JY, Deng C, Gou CY, Zhou WL, Yin H, Qin GH, Sha YH, Tao Y, Chen H, Yang YN, Song Y, Zhan DL, Wang J, Li LT, Dai MS, Gu C, Wang YZ, Shi DH, Wang XW, Zhang HP, Zeng L, Zheng DM, Wang CL, Chen MS, Wang GB, Xie L, Sovero V, Sha SF, Huang WJ, Zhang SJ, Zhang MY, Sun JM, Xu LL, Li Y, Liu X, Li QS, Shen JH, Wang JY, Paull RE, Bennetzen JL, Wang J, Zhang SL (2013) The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res 23:396–408

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu GA, Prochnik S, Jenkins J, Salse J, Hellsten U, Murat F, Perrier X, Ruiz M, Scalabrin S, Terol J, Takita MA, Labadie K, Poulain J, Couloux A, Jabbari K, Cattonaro F, Fabbro CD, Pinosio S, Zuccolo A, Chapman J, Grimwood J, Tadeo FR, Estornell LH, Muñoz-Sanz JV, Ibanez V, Herrero-Ortega A, Aleza P, Pérez-Pérez J, Ramón D, Brunel D, Luro F, Chen CX, Farmerie WG, Desany B, Kodira C, Mohiuddin M, Harkins T, Fredrikson K, Burns P, Lomsadze A, Borodovsky M, Reforgiato G, Freitas-Astúa J, Quetier F, Navarro L, Roose M, Wincker P, Schmutz J, Morgante M, Machado MA, Talon M, Jaillon O, Ollitrault P, Gmitter F, Rokhsar D (2014a) Sequencing of diverse mandarin, pummelo and orange genomes reveals complex history of admixture during citrus domestication. Nat Biotechnol 32:656–662

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu J, Li LT, Li M, Khan MA, Li XG, Chen H, Yin H, Zhang SL (2014b) High-density genetic linkage map construction and identification of fruit-related QTLs in pear using SNP and SSR markers. J Exp Bot: eru311

  • Xu Q, Chen LL, Ruan XA, Chen DJ, Zhu AD, Chen CL, Bertrand D, Jiao WB, Hao BH, Lyon MP, Chen JJ, Gao S, Xing F, Lan H, Chang JW, Ge XH, Lei Y, Hu Q, Miao Y, Wang L, Xiao SX, Biswas MK, Zeng WF, Guo F, Cao HB, Yang XM, Xu XW, Cheng YJ, Xu J, Liu JH, Luo JH, Tang ZH, Guo WW, Kuang HH, Zhang HY, Roose ML, Nagarajan N, Deng XX, Ruan YJ (2013) The draft genome of sweet orange (Citrus sinensis). Nat Genet 45:59–66

    Article  CAS  PubMed  Google Scholar 

  • Yagi M, Yamamoto T, Isobe S, Hirakawa H, Tabata S, Tanase K, Yamaguchi H, Onozaki T (2013) Construction of a reference genetic linkage map for carnation (Dianthus caryophyllus L.). BMC Genomics 14:734

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan JB, Yang XH, Shah T, Sánchez-Villeda H, Li JS, Warburton M, Zhou Y, Crouch JH, Xu YB (2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol Breed 25:441–451

    Article  CAS  Google Scholar 

  • Ye YM (1997) The diversity centre of pummelo germplasm. South Chin Fruit (China) 26:3–5

    Google Scholar 

  • Zhao HH, Fernando RL, Dekkers JC (2007) Power and precision of alternate methods for linkage disequilibrium mapping of quantitative trait loci. Genetics 175:1975–1986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the Ministry of Science and Technology of China (2011CB100600), the National Natural Science Foundation of China (31221062) and the Huazhong Agricultural University Scientific &Technological Self-innovation Foundation (2012YB11).

Data archiving statement

Genetic map is now under process of submission to Citrus Genome Database and will be completed during the review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuxin Deng.

Additional information

Communicated by W.-W. Guo

Supplementary materials

Below is the link to the electronic supplementary material.

Supplementary material 1

List of markers, linkage groups, genetic distances, and genome (sweet orange) location of SNPs and SSRs. (XLS 339 kb)

Supplementary material 2

Comparison of SSR markers with previously published linkage maps. (XLS 15 kb)

Supplementary material 3

Genetic maps for Guanxi pummelo (female) and Pingshan pummelo (male). (GIF 200 kb)

High resolution image (TIFF 5192 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Yu, H., Tang, Z. et al. Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genetics & Genomes 11, 2 (2015). https://doi.org/10.1007/s11295-014-0831-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0831-0

Keywords

Navigation