Skip to main content
Log in

Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic diversity and phylogenetic relationships among 48 pear accessions belonging to six species were determined using 23 morphological traits and 20 simple sequence repeat (SSR) primers. To assess the genetic diversity, data on morphological (both quantitative and qualitative) traits were recorded during 2010–2012 using standard pear descriptors. It was observed that the traits ratio of fruit length to diameter, persistency of calyx on mature fruits and fruit surface and pulp texture were important in detecting variation across pear species. At molecular level, 20 SSR primers amplified 190 polymorphic alleles with an average of 9.5 alleles per primer. Size of amplified alleles ranged from 85 to 450 bp. Mean polymorphic information content (PIC) was 0.80 showing high level of SSR polymorphism. Bayesian model-based STRUCTURE analysis assigned genotypes into five clusters and also showed the extent of admixture within individuals. Genotypes belonging to Pyrus pyrifolia were clustered into two different clusters indicating broad genetic base for this species while Pyrus communis genotypes appeared to have conserved genetic makeup. Dendrogram-based on Jaccard’s similarity coefficient and neighbor-joining tree showed two major groups of Asiatic (P. pyrifolia, Pyrus pashia, Pyrus serotina and Pyrus jacquemontiana) and European (P. communis) pears. However, accessions belonging to P. pyrifolia were further divided into subgroups. Cluster analysis based on morphological traits was in agreement with the dendrogram and structure clusters obtained with SSR data. The Mantel matrix correspondence test was used to further compare the molecular and morphological similarity matrices and positive correlation coefficient (r = 0.164; P = 0.001) was observed. Results of this study present important information about genetic structure of Indian pear accessions which can contribute significantly to future breeding and improvement programmes in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akcay ME, Burak M, Kazan K, Yuksel C, Mutaf F, Bakir M, Ayanoglu H, ErgÜl A (2014) Genetic analysis of Anatolian pear germplasm by simple sequence repeats (SSRs). Ann Appl Biol 164:441–452

    Article  CAS  Google Scholar 

  • Asanidze Z, Akhalkatsia M, Gvritishvili M (2011) Comparative morphometric study and relationships between the Caucasian species of wild pear (Pyrus spp.) and local cultivars in Georgia. Flora-Morphol Distrib Funct Ecol Plants 206:974–986

    Article  Google Scholar 

  • Bailey LH (1953) Standard cyclopedia of horticulture. The Mac Milan Co., New York

    Google Scholar 

  • Bao L, Chen K, Zhang D, Cao Y, Yamamoto T, Teng Y (2007) Genetic diversity and similarity of pear (Pyrus L.) cultivars native to East Asia revealed by SSR (simple sequence repeat) markers. Genet Resour Crop Evol 54:959–971

    Article  CAS  Google Scholar 

  • Bao L, Chen K, Zhang D, Li X, Teng Y (2008) An assessment of genetic variability and relationships within Asian pears based on AFLP (amplified fragment length polymorphism) markers. Sci Hortic 116:374–380

    Article  CAS  Google Scholar 

  • Baraket G, Chatti K, Saddoud O, Abdelkarim AB, Mars M, Trifi M, Hannachi AS (2011) Comparative assessment of SSR and AFLP markers for evaluation of genetic diversity and conservation of Fig, Ficus carica L., genetic resources in Tunisia. Plant Mol Biol Rep 29:171–184

    Article  Google Scholar 

  • Belaj A, Munoz-Diez C, Baldoni L, Proceddu A, Barranco D, Satovic Z (2007) Genetic diversity and population structure of wild olives from the north-western Mediterranean assessed by SSR markers. Ann Bot 20:1–10

    Google Scholar 

  • Bhat ZA, Dhillon WS, Singh K (2013) Genetic diversity studies on some pear genotypes using simple sequence repeats (SSRs) derived from apple and pear. Indian J Hort 70:1–6

    Google Scholar 

  • Botstein D, White KL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314–331

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao Y, Luming T, Yuan G, Fengzhi L (2012) Genetic diversity of cultivated and wild Ussurian Pear (Pyrus ussuriensis Maxim.) in China evaluated with M13-tailed SSR markers. Genet Resour Crop Evol 59:9–17

    Article  CAS  Google Scholar 

  • Dolatowski J, Nowosielski J, Podyma W, Szymanska M, Zych M (2004) Molecular studies on the variability of Polish semi-wild pears (Pyrus) using AFLP. J Fruit Orna Plant Res 12:331–37

    Google Scholar 

  • Dhillon BS, Rana JC (2004) Temperate fruits genetic resources management in India—issues and strategies. Acta Hort 662:139–146

    Google Scholar 

  • Dhillon BS, Dhillon WS (2008) Evaluation of hard pears germplasm for fruit bearing and quality attributes. Indian J Hort 65:389–392

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) A rapid total DNA preparation procedure for fresh plant tissue. Focus 12:13–15

    Google Scholar 

  • Earl DA, von Holdt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Erfani J, Ebadi A, Abdollahi H, Fatahi R (2012) Genetic diversity of some pear cultivars and genotypes using simple sequence repeat (SSR) markers. Plant Mol Biol Rep 30:1065–1072

    Article  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • FAOSTAT (2012) Food and Agricultural Organization of United Nations, http://faostat.fao.org/site/567/default.aspx

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fowler C, Mooney P (1990) The threatened gene-food, politics and the loss of genetic diversity. University of Arizona Press, Tucson, p 104

    Google Scholar 

  • Franceschi PD, Pierantoni L, Dondini L, Grandi M, Sansavini S, Sanzol J (2011) Evaluation of candidate F-box genes for the pollen S of gametophytic self-incompatibility in the Pyrinae (Rosaceae) on the basis of their phylogenomic context. Tree Genet Genomes 7:663–683

    Article  Google Scholar 

  • Harada T, Kurahashi W, Yanai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Sci Hortic 105:447–456

    Article  CAS  Google Scholar 

  • Hedrick UP, Howe GH, Taylor OM, Francis EH, Tukey HB (1921) The pears of New York. 29th Annual Report, New York Department of Agriculture. JB Lyon Co. Printers, Albany, New York

  • Hemmat M, Weeden NF, Brown SK (2003) Mapping and evaluation of Malus x domestica microsatellites in apple and pear. J Am Soc Hort Sci 128:515–520

    CAS  Google Scholar 

  • Iezzoni AF (2008) Cherries. In: Hancock JF (ed) Temperate fruit crop breeding. Springer, Berlin, pp 151–175

    Chapter  Google Scholar 

  • Iezzoni AF, Pritts MP (1991) Applications of principal components analysis to horticultural research. Hort Sci 26:334–338

    Google Scholar 

  • Iketani H, Manabe T, Matsuta N, Akihama T, Hayashi T (1998) Incongruence between RFLPs of chloroplast DNA and morphological classification in east Asian pear (Pyrus spp.). Genet Resour Crop Evol 45:533–539

    Article  Google Scholar 

  • Iketani H, Katayama H, Uematsu C, Mase N, Sato Y, Yamamoto T (2012) Genetic structure of East Asian cultivated pears (Pyrus spp.) and their reclassification in accordance with the nomenclature of cultivated plants. Plant Syst Evol 298:1689–1700

    Article  Google Scholar 

  • Katayama H, Uematsu C (2003) Comparative analysis of chloroplast DNA in Pyrus species: physical map and gene localization. Theor Appl Genet 106:303–310

    CAS  PubMed  Google Scholar 

  • Kim CS, Lee CH, Park KW, Kang SJ, Shin IS, Lee GP (2005) Phylogenetic relationships among Pyrus pyrifolia and P. communis detected by randomly amplified polymorphic DNA (RAPD) and conserved rDNA sequences. Sci Hortic 106:491–501

    Article  CAS  Google Scholar 

  • Kumar A, Bist LD, Avasthe RK (2010) Germplasm evaluation of low-chill pears (Pyrus spp.) for vegetative, reproductive and fruit quality parameters in Tarai Area of Uttarakhand. Indian J Plant Genet Resour 23:13–17

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van de Weg E, Gessler C (2002) Development and characterisation of 140 new microsatellites in Apple (Malus X domestica Borkh.). Mol Breed 10:217–241

    Article  CAS  Google Scholar 

  • Lombard P, Westwood MN (1987) Pear rootstocks. In: Rom RC, Carlson RF (eds) Rootstocks for fruit trees. Wiley, New York, pp 145–183

    Google Scholar 

  • Santiago-Pereira L, Ferreira AR, dos Santosa AMR-C, Saub F, Díaz-Hernándeza MB (2012) Morphological variation in local pears from north-western Spain. Sci Hortic 138:176–182

    Article  Google Scholar 

  • Mahajan RK, Gangopadhyay KK, Gunjeet K, Dobhal YK, Srivastava U, Gupta PN, Pareek SK (2002) Minimal descriptors of Agri-horticultural crops. Part ll J. Fruit Crops- National Bureau of Plant Genetic Resources, New Delhi, pp 223–228

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Mondini L, Noorani A, Pagnotta MA (2009) Assessing plant genetic diversity by molecular tools. Diversity 1:19–35

    Article  CAS  Google Scholar 

  • Nishitani C, Terakami S, Sawamura Y, Takada N, Yamamoto T (2009) Development of novel EST-SSR markers derived from Japanese pear (Pyrus pyrifolia). Breed Sci 59:391–400

    Article  CAS  Google Scholar 

  • Nybom H, Weising K (2010) DNA-based identification of clonally propagated cultivars. In: J. JANICK (ed.) Plant Breeding Reviews. 34:221–295

  • Oliveira CM, Mota M, Monte-Corvo L, Goulao L, Silva DL (1999) Molecular typing of Pyrus based on RAPD markers. Sci Hortic 79:163–174

    Article  CAS  Google Scholar 

  • Paganová V (2003) Taxonomic reliability of leaf and fruit morphological characteristics of the Pyrus L. taxa in Slovakia. Hort Sci (Prague) 30:98–107

    Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software http://darwin.cirad.fr/darwin

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rakonjac V, Fotiric Aksic M, Nikolic D, Milatovic D, Colic S (2010) Morphological characterization of ‘Oblacinska’ sour cherry by multivariate analysis. Sci Hortic 125:679–684

    Article  Google Scholar 

  • Rana JC, Pradheep K, Verma VD (2007) Naturally occurring wild relatives of temperate fruits in western Himalayan region of India: an analysis. Biodivers Conserv 16:3963–3991

    Article  Google Scholar 

  • Rana JC, Dutta M, Rathi RS (2012) Plant genetic resources of the Indian Himalayan region—an overview. Indian J Genet 72:115–129

    Google Scholar 

  • Rana JC, Singh A, Sharma Y, Pradheep K, Mendiratta N (2010) Dynamics of plant bioresources in Western Himalayan Region of India—watershed based case study. Curr Sci 98(2):192–203

    Google Scholar 

  • Rohlf FJ (1998) NTSYSpc Numerical Taxonomy and Multivariate Analysis System Version 2.0. Applied Biostatistics Inc, Setauket, 37 pp

    Google Scholar 

  • Said AA, Ahmed O, Fatima G, Marie HS, Cherkaoui EM (2013) Phenotypic biodiversity of an endemic wild pear, Pyrus mamorensis Trab., in North-western Morocco using morphological descriptors. Genet Resour Crop Evol 60:927–938

    Article  Google Scholar 

  • Sehic J, Garkava-Gustavsson L, Fernández-Fernández F, Nybom H (2012) Genetic diversity in a collection of European pear (Pyrus communis) cultivars determined with SSR markers chosen by ECPGR. Sci Hortic 145:39–45

    Article  CAS  Google Scholar 

  • Sharma M, Rana JC (2010) Pear breeding and improvement. In: Sharma RM, Pandey SN, Pandey V (eds) The pear: production, post-harvest management and protection. IDBC Publishers, Lucknow, pp 47–79

    Google Scholar 

  • Silva GJ, Souza TM, Barbieri RL, Oliveira ACD (2014) Origin, domestication, and dispersing of pear (Pyrus spp.). Adv Agr. doi:10.1155/2014/541097

    Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica L. Batsch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Tian L, Gao Y, Cao Y, Liu F, Yang J (2012) Identification of Chinese white pear cultivars using SSR markers. Genet Resour Crop Evol 59:317–326

    Article  Google Scholar 

  • Trivedi AK, Krishna H, Verma SK, Tyagi RK, Arya RR (2012) Genetic diversity of pear (Pyrus spp.) in Uttarakhand Himalayas. Indian J Plant Genet Resour 26:32–37

    Google Scholar 

  • Verma VD, Pradheep K, Yadav SK, Rana JC (2009) Evaluation of indigenous and exotic peach germplasm under upper hill conditions. Indian J Hort 66:415–419

    Google Scholar 

  • Verma VD, Pradheep K, Yaday SK, Rana JC, Chander R (2006) Evaluation of Pears (Pyrus spp.) germplasm under temperate region of Himachal Pradesh. Indian J Plant Genet Resour 19:96–99

    Google Scholar 

  • Volk GM, Richards CM, Henk AD, Reilley A (2006) Diversity of wild Pyrus communis based on Microsatellite analyses. J Amer Soc Hort Sci 131(3):408–417

    CAS  Google Scholar 

  • Voltas J, Peman J, Fuste F (2007) Phenotypic diversity and delimitation between wild and cultivated forms of the genus Pyrus in North-eastern Spain based on morphometric analyses. Genet Resour Crop Evol 54:1473–1487

    Article  Google Scholar 

  • Watkins R (1986) Apples (genus Malus), pears (genus Pyrus), and plums, apricots, almonds, peaches cherries (genus Prunus). In: Hora B (ed) The Oxford encyclopaedia of tree of the world, Oxford University Press, p 197–201

  • Westwood MN, Bjornstad HO (1971) Some fruit characteristics of interspecific hybrids and extent of self-sterility in Pyrus. Bull Torrey Bot Club 98:22–24

    Article  Google Scholar 

  • Westwood MN, Blaney LT (1963) Non-climatic factors affecting the shape of apple fruits. Nature 200:802–803

    Article  Google Scholar 

  • Wolko L, Antkowiak W, Lenartowicz E, Bocianowski J (2010) Genetic diversity of European pear cultivars (Pyrus communis L.) and wild pear (Pyrus pyraster (L.) Burgsd.) inferred from microsatellite markers analysis. Genet Resour Crop Evol 57:801–806

    Article  CAS  Google Scholar 

  • Wünsch A, Hormaza JI (2007) Characterisation of variability and genetic similarity of European pear using microsatellite loci developed in apple. Sci Hortic 173:37–43

    Article  Google Scholar 

  • Yamamoto T, Kimura T, Sawamura Y, Manabe T, Kotobuki K, Hayashi T, Ban Y, Matsuta N (2002a) Simple sequence repeats for genetic analysis in pear. Euphytica 124:129–137

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Ban Y, Hayashi T, Matsuta N (2002b) Development of microsatellite markers in the Japanese pear (Pyrus pyrifolia Nakai). Mol Ecol Notes 2:14–16

    Article  CAS  Google Scholar 

  • Yamamoto T, Kimura T, Shoda M, Imai T, Saito T, Sawamura Y, Kotobuki K, Hayashi T, Matsuta N (2002c) Genetic linkage maps constructed by using an interspecific cross between Japanese and European pears. Theor Appl Genet 106:9–18

    CAS  PubMed  Google Scholar 

  • Yao L, Zheng X, Cai D, Gao Y, Wang K, Cao Y, Teng Y (2010) Exploitation of Malus EST-SSRs and the utility in evaluation of genetic diversity in Malus and Pyrus. Genet Resour Crop Evol 57:841–851

    Article  CAS  Google Scholar 

  • Yeh FC, Boyle TJB (1997) Population genetic analysis of codominant and dominant markers and quantitative traits. Belgian J Bot 129:157–163

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the anonymous reviewers for their critical comments and suggestions.

Data archiving statement

The information on accessions used and the phenotypic data files are being submitted to Genomic Database to Rosaceae (GDR) at www.rosaceae.org.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jai C. Rana or Tilak R. Sharma.

Additional information

Communicated by D. Chagné

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, J.C., Chahota, R.K., Sharma, V. et al. Genetic diversity and structure of Pyrus accessions of Indian Himalayan region based on morphological and SSR markers. Tree Genetics & Genomes 11, 821 (2015). https://doi.org/10.1007/s11295-014-0821-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0821-2

Keywords

Navigation