Skip to main content
Log in

Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

There are four Osmanthus fragrans cultivar groups, which exhibit significant inter-group differences in flower coloration. In this study, we analyzed carotenoid metabolites and the expression of carotenoid-biosynthetic genes in three O. fragrans cultivars differing substantially in flower coloration: 'Zi Yingui' (butter yellow), 'Jingui' (golden yellow), and 'Chenghong Dangui' (orange-red). The results of high-performance liquid chromatography (HPLC) analysis show that 'Zi Yingui' petals contain small amounts of β-carotene, 'Jingui' petals have high levels of lutein as well as low levels of α-carotene and β-carotene, and 'Chenghong Dangui' petals accumulate considerable concentrations of α-carotene and β-carotene. Reverse transcription-polymerase chain reaction (RT-PCR) analysis of genes in the carotenoid synthesis and degradation pathways indicates that these genes have cultivar-specific modes of expression. OfHYB and OfZEP are more strongly expressed in 'Zi Yingui' and 'Jingui' petals than in 'Chenghong Dangui' petals, resulting in greater β-carotene concentrations in the latter. OfLCYE is most strongly expressed in 'Jingui' petals, leading to lutein accumulation. The overexpression of OfCCD1 and OfCCD4 in 'Zi Yingui' and 'Jingui' is responsible for the near non-existence of α-carotene and β-carotene in petals thereof. Methylation analysis of the promoter region of the OfCCD4 gene in 'Zi Yingui' and 'Chenghong Dangui' shows that 'Chenghong Dangui' has a methylation ratio of 50.18 %, higher than the 43.87 % of 'Zi Yingui'. The results of the present study indicates that O. fragrans cultivars vary in pigment composition and concentrations due to differential expressions of the downstream genes in the carotenoid synthesis pathway as well as the genes in the carotenoid degradation pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Auldridge ME, Block A, Vogel DJ, Dabney-Smith C, Mila I, Bouzayen M, Magallanes-Lundback M, DellaPenna D, McCarty DR, Klee HJ (2006a) Characterization of three members of the Arabidopsis carotenoid cleavage dioxygenase family demonstrates the divergent roles of this multifunctional enzyme family. Plant J 45:982–993

    Article  CAS  PubMed  Google Scholar 

  • Auldridge ME, McCarty DR, Klee HJ (2006b) Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr Opin Plant Biol 9:315–321

    Article  CAS  PubMed  Google Scholar 

  • Bai L, Kim EH, DellaPenna D, Brutnell TP (2009) Novel lycopene epsilon cyclase activities in maize revealed through perturbation of carotenoid biosynthesis. Plant J 59:588–599

    Article  CAS  PubMed  Google Scholar 

  • Baldermann S, Kato M, Kurosawa M, Kurobayashi Y, Fujita A, Fleischmann P, Watanabe N (2010) Functional characterization of a carotenoid cleavage dioxygenase 1 and its relation to the carotenoid accumulation and volatile emission during the floral development of Osmanthus fragrans Lour. J Exp Bot 11:2967–2977

    Article  Google Scholar 

  • Bartee L, Malagnac F, Bender J (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev 15:1753–1758

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bender J, Fink GR (1995) Epigenetic control of an endogeneous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734

    Article  CAS  PubMed  Google Scholar 

  • Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16:6–21

    Article  CAS  PubMed  Google Scholar 

  • Bouvier F, Hugueney P, d’Harlingue A, Kuntz M, Camara B (1994) Xanthophyll biosynthesis in chromoplast: isolation and molecular cloning of an enzyme catalyzing the conversion of 5,6-epoxycarotenoid into ketocarotenoid. Plant J 6:45–54

    Article  CAS  PubMed  Google Scholar 

  • Brown PTH (1989) DNA methylation in plants and its role in tissue culture. Genome 31:717–729

    Article  CAS  Google Scholar 

  • Cao XF, Jacobsen SE (2002) Locus-specific control of asymmetric and CpNpG methylation by the DRM and CMT3 methyltransferase genes. Proc Natl Acad Sci U S A 99:16491–16498

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chiou CY, Pan HA, Chuang YN, Yeh KW (2010) Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta 232:937–948

    Article  CAS  PubMed  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Adams WW III (2002) Antioxidants in photosynthesis and human nutrition. Science 298:2149–2153

    Article  CAS  PubMed  Google Scholar 

  • Elmayan T, Balzergue S, Beon F, Bourdon V, Daubremet J, Guenet Y, Mourrain P, Palauqui JC, Vernhettes S, Vialle T, Wostrikoff K, Vaucheeret H (1998) Arabidopsis mutants impaired in cosuppression. Plant Cell 10:1747–1757

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giuliano G, Bartley GE, Scolnik PA (1993) Regulation of carotenoid biosynthesis during tomato development. Plant Cell 5:379–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Han YJ, Liu LL, Dong MF, Yuan WJ, Shang FD (2013) cDNA cloning of the phytoene synthase (PSY) and expression analysis of PSY and carotenoid cleavage dioxygenase genes in Osmanthus fragrans. Biologia 68:258–263

    Article  CAS  Google Scholar 

  • Henderson IR, Jacobsen SE (2008) Tandem repeats upstream of the Arabidopsis endogene SDC recruit non-CG DNA methylation and initiate siRNA spreading. Genes Dev 22:1597–1606

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  CAS  PubMed  Google Scholar 

  • Huang FC, Horváth G, Molnár P, Turcsi E, Deli JZ, Schrader J, Sandmann G, Schmidt H, Schwab W (2009a) Substrate promiscuity of RdCCD1, a carotenoid cleavage oxygenase from Rosa damascena. Phytochemistry 70:457–464

    Article  CAS  PubMed  Google Scholar 

  • Huang FC, Molnár P, Schwab W (2009b) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibdah M, Azulay Y, Portnoy V, Wasserman B, Bar E, Meir A, Burger Y, Hirschberg J, Schaffer AA, Katzir N, Tadmor Y, Lewinsohn E (2006) Functional characterization of CmCCD1, a carotenoid cleavage dioxygenase from melon. Phytochemistry 67:1579–1589

    Article  CAS  PubMed  Google Scholar 

  • Ikoma Y, Komatsu A, Kita M, Ogawa K, Omura M, Yano M, Moriguchi T (2001) Expression of a phytoene synthase gene and characteristic carotenoid accumulation during citrus fruit development. Physiol Plant 111:232–238

    Article  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jacobsen SE, Sakai H, Finnegan EJ, Cao XF, Meyerowitz EM (2000) Ectopic hypermethylation of flower-specific genes in Arabidopsis. Curr Biol 10:179–186

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Ikoma Y, Matsumoto H, Sugiura M, Hyodo H, Yano M (2004) Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in Citrus fruit. Plant Physiol 134:824–837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kato M, Matsumoto H, Ikoma Y, Okuda H, Yano M (2006) The role of carotenoid cleavage dioxygenases in the regulation of carotenoid profiles during maturation in citrus fruit. J Exp Bot 57:2153–2164

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto S, Ohmiya A (2006) Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium Ramat.). Physiol Plant 128:436–447

    Article  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2009) Molecular biology dynamic DNA methylation. Science 323:1568–1569

    Article  CAS  PubMed  Google Scholar 

  • Lindroth AM, Cao XF, Jackson JP, Zilberman D, McCallum CM, Henikoff S, Jacobsen S (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Wendel JF (2003) Epigenetic phenomena and the evolution of plant allopolyploids. Mol Phylogenet Evol 29:365–379

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Xu J, Liu Y, Zhao X, Deng X, Guo L, Gu J (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58:4161–4171

    Article  CAS  PubMed  Google Scholar 

  • Mathieu S, Terrier N, Procureur J, Bigey F, Günata Z (2005) A carotenoid cleavage dioxygenase from Vitis vinifera L.: functional characterization and expression during grape berry development in relation to C13-norisoprenoid accumulation. J Exp Bot 56:2721–2731

    Article  CAS  PubMed  Google Scholar 

  • Melquist S, Luff B, Bender J (1999) Arabidopsis PAI gene arrangements, cytosine methylation and expression. Genetics 153:401–413

    CAS  PubMed Central  PubMed  Google Scholar 

  • Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T (2001) Mobilization of transposons by a mutation abolishing full DNA methylation in Arabidopsis. Nature 411:212–214

    Article  CAS  PubMed  Google Scholar 

  • Moehs PC, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293

    Article  CAS  PubMed  Google Scholar 

  • Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211:393–396

    Article  CAS  PubMed  Google Scholar 

  • Moran R, Porath D (1980) Chlorophyll determination in intact tissues using N, N-dimethylformamide. Plant Physiol 65:478–479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen KM, Lewis DH, Morgan ER (2003) Characterization of carotenoid pigments and their biosynthesis in two yellow flowered lines of Sandersonia aurantiaca (Hook). Euphytica 130:25–34

    Article  CAS  Google Scholar 

  • Ohmiya A, Kishimoto S, Aida R, Yoshioka S, Sumitomo K (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol 142:1193–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronen G, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is downregulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  CAS  PubMed  Google Scholar 

  • Rubio A, Rambla JL, Santaella M, Gómez MD, Orzaez D, Granell A, Gómez-Gómez L (2008) Cytosolic and plastoglobuletargeted carotenoid dioxygenases from Crocus sativus are both involved in β-ionone-release. J Biol Chem 283:24816–24825

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schubert N, Garcia-Mendoza E, Pacheco-Ruiz I (2006) Carotenoid composition of marine red algae. J Phycol 42:1208–1216

    Article  CAS  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SH, Qin XQ, Zeevaart JAD (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211

    Article  CAS  PubMed  Google Scholar 

  • Shibukawa T, Yazawa K, Kikuchi A, Kamada H (2009) Possible involvement of DNA methylation on expression regulation of carrot LEC1 gene in its 5′-upstream region. Gene 437:22–31

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, Schwartz SH, Auldridge M, Taylor MG, Klee HJ (2004) The tomato carotenoid cleavage dioxygenase 1 genes contribute to the formation of the flavor volatiles beta-ionone, pseudoionone, and geranylacetone. Plant J 40:882–892

    Article  CAS  PubMed  Google Scholar 

  • Simkin AJ, Moreau H, Kuntz M, Pagny G, Lin C, Tanksley S, McCarthy J (2008) An investigation of carotenoid biosynthesis in Coffea canephora and Coffea arabica. J Plant Physiol 165:1087–1106

    Article  CAS  PubMed  Google Scholar 

  • Soppe WJ, Jacobsen SE, Alonso-Blanco C, Jackson JP, Kakutani T, Koornneef M, Peeters AJ (2000) The late flowering phenotype of fwa mutants is caused by gain-of-function epigenetic alleles of a homeodomain gene. Mol Cell 6:791–802

    Article  CAS  PubMed  Google Scholar 

  • Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749

    Article  CAS  PubMed  Google Scholar 

  • Vogel JT, Tan B-C, McCarty DR, Klee HJ (2008) The carotenoid cleavage dioxygenase 1 enzyme has broad substrate specificity, cleaving multiple carotenoids at two different bond positions. J Biol Chem 283:11364–11373

    Article  CAS  PubMed  Google Scholar 

  • Yamagishi M, Kishimoto S, Nakayama M (2009) Carotenoid composition and changes in expression of carotenoid biosynthetic genes in tepals of Asiatic hybrid lily. Plant Breed 128:172–177

    Article  CAS  Google Scholar 

  • Yamamizo C, Kishimoto S, Ohmiya A (2010) Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J Exp Bot 61:709–719

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang KM (2005) China Osmanthus anthology. Shanghai Press of Science and Technology, Shanghai, p 47

    Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Funds in China (No. 31270738) and Natural Science Funds of Education Department Henan Province (No. 13A180052)

Data archiving statement

We sent the entire OfPSY gene — 1,314 bp, encoding 438 amino acids — to the NCBI repositories and the accession number is JQ699273.

Partial cDNA of OfPDS, OfZDS, OfLCYE, OfLCYB, OfHYB, OfZEP and OfNCED, we sent to the NCBI repositories and the GenBank access numbers were KF701118, KF701119, KF701116, KF701115, KF701114, KF701120 and KF701117, respectively.

A 1,337-bp segment from upstream OfCCD4 gene's 5′-end, we sent to the NCBI repositories and the GenBank access number was KF701121.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fude Shang.

Additional information

Communicated by A. Dandekar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Wang, X., Chen, W. et al. Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans . Tree Genetics & Genomes 10, 329–338 (2014). https://doi.org/10.1007/s11295-013-0687-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0687-8

Keywords

Navigation