Skip to main content
Log in

Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

We are interested in controlling strobili production in Cryptomeria japonica D. Don by genetic engineering. However, details of the molecular mechanisms governing reproduction in gymnosperms have not been documented. In this study, we characterized the SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1)-like (CjMADS15) and AGAMOUS-LIKE 6 (AGL6)-like (CjMADS14) MADS-box genes of C. japonica. Their expression patterns differed in that CjMADS15 was expressed in all organs except pollen, and was especially expressed in needles, stems and strobili, whereas CjMADS14 was expressed mainly in male and female strobili. Furthermore, gibberellic acid (GA3)-induced expression of CjMADS14 and CjMADS15 also differed; expression of CjMADS15 increased within a week of GA3 treatment, whereas expression of CjMADS14 increased within 1 month. Both genes had the potential to induce early reproduction, because transgenic Arabidopsis that ectopically expressed CjMADS14 or CjMADS15 flowered earlier than wild-type plants. When we overexpressed a fusion of CjMADS14 to a transcriptional repression domain (SRDX) from SUPERMAN under control of the cauliflower mosaic virus (CaMV) 35S promoter (35S), the flowering time of transgenic Arabidopsis with the 35S::CjMADS14:SRDX construct was comparable with that of 35S::CjMADS14. Thus, CjMADS14 and CjMADS15 play important roles during the development of male and female strobili in C. japonica. Our finding will contribute to elucidate the molecular mechanisms for the formation of reproductive organs in gymnosperms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Carlsbecker A, Tandre K, Johanson U, Englund M, Engström P (2004) The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J 40:546–557

    Article  CAS  PubMed  Google Scholar 

  • Carlsbecker A, Sundström JF, Englund M, Uddenberg D, Izquierdo L, Kvarnheden A, Vergara-Silva F, Engström P (2013) Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs. New Phytol. doi:10.1111/nph.12360

    PubMed  Google Scholar 

  • Chang YY, Chiu YF, Wu JW, Yang CH (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol 50:1425–1438

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC (2005) Comprehensive interaction map of the Arabidopsis MADS box transcription factors. Plant Cell 17:1424–1433

    Article  PubMed Central  PubMed  Google Scholar 

  • Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160

    Article  CAS  PubMed  Google Scholar 

  • Fukui M, Futamura N, Mukai Y, Wang Y, Nagao A, Shinohara K (2001) Ancestral MADS box genes in Sugi, Cryptomeria japonica D. Don (Taxodiaceae), homologous to the B function genes in angiosperms. Plant Cell Physiol 42:566–574

    Article  CAS  PubMed  Google Scholar 

  • Futamura N, Tani N, Tsumura Y, Nakajima N, Sakaguchi M, Shinohara K (2006) Characterization of genes for novel thaumatin-like proteins in Cryptomeria japonica. Tree Physiol 26:51–62

    Article  CAS  PubMed  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9:383

    Article  PubMed Central  PubMed  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirement of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J 34:733–739

    Article  CAS  PubMed  Google Scholar 

  • Igasaki T, Sato T, Akashi N, Mohri T, Maruyama E, Kinoshita I, Walter C, Shinohara K (2003) Somatic embryogenesis and plant regeneration from immature zygotic embryos of Cryptomeria japonica D. Don. Plant Cell Rep 22:239–243

    Article  CAS  PubMed  Google Scholar 

  • Igasaki T, Watanabe Y, Nishiguchi M, Kotoda N (2008) The FLOWERING LOCUS T/TERMINAL FLOWER 1 family in Lombardy poplar. Plant Cell Physiol 49:291–300

    Article  CAS  PubMed  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jager M, Hassanin A, Manuel M, Guyader HL, Deutsch J (2003) MADS-box genes in Ginkgo biloba and evolution of the AGAMOUS family. Mol Biol Evol 20:842–854

    Article  CAS  PubMed  Google Scholar 

  • Kanno A, Hienuki H, Ito T, Nalamura T, Fukuda T, Yun PY, Song IJ, Kamimura T, Ochiai T, Yokoyama J, Maki M, Kameya T (2006) The structure and expression of SEPALLATA-like genes in Asparagus species (Asparagaceae). Sex Plant Reprod 19:133–144

    Article  CAS  Google Scholar 

  • Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun D-J, Lee SY, Cho MJ, Weigel D, Kim MC (2010) Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box gene AGAMOUS-LIKE 6. Plant J 62:807–816

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Alonso-Blanco C, Peeters AJM, Scoppe W (1998) Genetic control of flowering time in Arabidopsis. Annu Rev Plant Physiol Plant Mol Biol 49:345–370

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254

    Article  CAS  PubMed  Google Scholar 

  • Levy YY, Dean C (1998) The transition to flowering. Plant Cell 10:1973–1989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovisetto A, Guzzo F, Tadiello A, Toffali K, Favretto A, Casadoro G (2012) Molecular analyses of MADS-box genes trace back to gymnosperms the invention of fleshy fruits. Mol Biol Evol 29:409–419

    Article  CAS  PubMed  Google Scholar 

  • Maruyama E, Tanaka T, Hosoi Y, Ishii K, Morohoshi N (2000) Embryogenic cell culture, protoplast regeneration, cryopreservation, biolistic gene transfer and plant regeneration in Japanese cedar (Cryptomeria japonica D. Don). Plant Biotechnol 17:281–296

    Article  CAS  Google Scholar 

  • Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T (2008) Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet 40:1489–1492

    Article  CAS  PubMed  Google Scholar 

  • Melzer R, Wang YQ, Theißen G (2010) The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol 21:118–128

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD (2009) Flowering time regulation produces much fruit. Curr Opin Plant Biol 12:75–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mohri T, Igasaki T, Sato T, Shinohara K (2000) Expression of genes for β-glucuronidase and luciferase in three species of Japanese conifer (Pinus thunbergii, P. densiflora and Cryptomeria japonica) after transfer of DNA by microprojectile bombardment. Plant Biotechnol 17:49–54

    Article  CAS  Google Scholar 

  • Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale RD (1998) Family of MADS-box genes expressed early in male and female reproductive structures of Monterey pine. Plant Physiol 117:55–62

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nagao A, Sasaki S, Pharis RP (1989) Cryptomeria japonica. In: Halevy AH (ed) CRC handbook of flowering, vol. VI. CRC Press, Boca Raton, pp 247–269

    Google Scholar 

  • Nakamura T, Song IJ, Fukuda T, Yokoyama J, Maki M, Ochiai T, Kameya T, Kanno A (2005) Characterization of TrcMADS1 gene of Trillium camtschatcense (Trilliaceae) reveals functional evolution of the SOC1/TM3-like gene family. J Plant Res 118:229–234

    Article  CAS  PubMed  Google Scholar 

  • Ohmori S, Kimizu M, Sugita M, Miyao A, Hirochika H, Uchida E, Nagato Y, Yoshida H (2009) MOSAIC FLORAL ORGANS1, an AGL6-like MADS-box gene, regulates floral organ identity and meristem fate in rice. Plant Cell 21:3008–3025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rijpkema AS, Zethof J, Gerats T, Vandenbussche M (2009) The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J 60:1–9

    Article  CAS  PubMed  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS-box genes in Arabidopsis development. Plant Cell 7:1259–1269

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rutledge R, Regan S, Nicolas O, Fobert P, Côté C, Bosnich W, Kauffeldt C, Sunohara G, Séguin A, Stewart D (1998) Characterization of an AGAMOU homologue from the conifer black spruce (Picea mariana) that produces floral homeotic conversions when expressed in Arabidopsis. Plant J 15:625–634

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Seo E, Lee H, Jeon J, Park H, Kim J, Noh YS, Lee I (2009) Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC. Plant Cell 21:3185–3197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shindo S, Ito M, Ueda K, Kato M, Hasebe M (1999) Characterization of MADS genes in gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev 1:180–190

    Article  CAS  PubMed  Google Scholar 

  • Shiokawa T, Yamada S, Futamura N, Osanai K, Murasugi D, Shinohara K, Kawai S, Morohoshi N, Katayama Y, Kajita S (2008) Isolation and functional analysis of the CjNdly gene, a homolog in Cryptomeria japonica of FLORICAULA/LEAFY genes. Tree Physiol 28:21–28

    Article  CAS  PubMed  Google Scholar 

  • Shitsukawa N, Ikari C, Mitsuya T, Sakiyama T, Ishikawa A, Takumi S, Murai K (2007) Wheat SOC1 functions independently of WAP1/VRN1, an integrator of vernalization and photoperiod flowering promotion pathways. Physiol Plant 130:627–636

    Article  CAS  Google Scholar 

  • Soltis DE, Ma H, Frohlich MW, Soltis PS, Albert VA, Oppenheimer DG, Altman NS, dePamphilis C, Leebens-Mack J (2007) The floral genome: an evolutionary history of gene duplication and shifting patterns of gene expression. Trends Plant Sci 12:358–367

    Article  CAS  PubMed  Google Scholar 

  • Tadege M, Sheldon CC, Helliwell CA, Upadhyaya NM, Dennis ES, Peacock WJ (2003) Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotechnol J 1:361–369

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetic analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tandre K, Albert VA, Sundås A, Engström P (1995) Conifer homologous to genes that control floral development in angiosperm. Plant Mol Biol 27:69–78

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi T, Ohmiya Y, Kurita M, Tsubomura M, Kondo T (2008) Regeneration of transgenic Cryptomeria japonica D. Don after Agrobacterium tumefaciens-mediated transformation of embryogenic tissue. Plant Cell Rep 27:1461–1466

    Article  CAS  PubMed  Google Scholar 

  • Theißen G, Kim JT, Saedler H (1996) Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J Mol Evol 43:484–516

    Article  PubMed  Google Scholar 

  • Thompson JD, Higgings DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uddenberg D, Reimegård J, Clapham D, Almqvist C, von Arnold S, Emanuelsson O, Sundström JF (2013) Early cone setting in Picea abies acrocona is associated with increased transcriptional activity of a MADS box transcription factor. Plant Physiol 161:813–823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandenbussche M, Theissen G, Van de Peer Y, Gerats T (2003) Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31:4401–4409

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34.1–34.11

    Article  Google Scholar 

  • Walden AR, Wang DY, Walter C, Gardner RC (1998) A large family of TM3 MADS-box cDNAs in Pinus radiata includes two members with deletions of the conserved K domain. Plant Sci 138:167–176

    Article  CAS  Google Scholar 

  • Watson JM, Brill EM (2004) Eucalyptus grandis has at least two functional SOC1-like floral activator genes. Funct Plant Biol 31:225–234

    Article  CAS  Google Scholar 

  • Winter KU, Becker A, Münster T, Kim JT, Saedler H, Theissen G (1999) MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci U S A 96:7342–7347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoo SK, Wu X, Lee JS, Ahn JH (2011) AGAMOUS-LIKE 6 is a floral promoter that negatively regulates the FLC/MAF clade genes and positively regulates FT in Arabidopsis. Plant J 65:62–76

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. N. Akashi for her technical assistance. This research was supported in part by a Grant-in-Aid (Development of Technologies for Control of Pollen Production by Genetic Engineering) from the Forest Agency of Japan.

Data Archiving Statement

CjMADS14 (accession number AB359029) and CjMADS15 (AB359030) cDNA sequences were submitted to GenBank. Furthermore, two DEF/GLO-like (CjMADS6: AB359036 and CjMADS9: AB359035), AG-like (CjMADS4: AB359031) and TM8-like (CjMADS12: AB359028) cDNA sequence were also submitted to GenBank.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Futamura.

Additional information

Communicated by J. Dean

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 56 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katahata, SI., Futamura, N., Igasaki, T. et al. Functional analysis of SOC1-like and AGL6-like MADS-box genes of the gymnosperm Cryptomeria japonica . Tree Genetics & Genomes 10, 317–327 (2014). https://doi.org/10.1007/s11295-013-0686-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0686-9

Keywords

Navigation