Skip to main content
Log in

Photosynthetic response to genome methylation affects the growth of Chinese white poplar

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genome methylation plays a key role in regulating gene expression, but limited knowledge exists concerning the link between DNA methylation and economic traits in forest trees. We measured photosynthetic characteristics and growth traits in 130 intraspecific hybrids of Chinese white poplar (Populus tomentosa Carr.) and detected their genome methylation. The phenotypic data were normally distributed, and each trait had a significant difference among the hybrids. The net photosynthetic rate (Pn, 14.83 ± 3.76 μmol m−2 s−1), stomatal conductance (Gs, 0.29 ± 0.09 mol m−2 s−1), and intercellular CO2 concentration (Ci, 264.50 ± 30.94 μmol mol−1) showed similar trends. Positive correlations were found between Pn and height (H, 133.59 ± 50.44 cm) and basal diameter (D, 16.29 ± 5.20 mm), respectively. Using methylation-sensitive amplification polymorphism (MSAP) analysis, 32 primer-pair combinations generated 715 polymorphic markers. Positive correlations between photosynthetic characteristics, such as Pn and Gs, and total relative methylation level and relative hemimethylation (CNG methylation) level were investigated. Eighty-one candidate markers were associated with Pn, Gs, or Ci, 13 of which were also associated with growth traits using single MSAP molecular marker association. Sequencing and BLAST analysis showed that candidate markers were linked to genes encoding protochlorophyllide reductase and proteins of cytochrome P450 CYP4/CYP19/CYP26 subfamilies, and linked to genes taking part in, e.g., photosystem II. Therefore, the regions defined by the MSAP candidate markers are linked to genes that are essential for photosynthetic characteristics that respond to DNA methylation and subsequently affect growth traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Assaad FF, Tucker KL, Signer ER (1993) Epigenetic repeat-induced gene silencing (RIGS) in Arabidopsis. Plant Mol Biol 22:1067–1085

    Article  PubMed  CAS  Google Scholar 

  • Bassman JH, Zwier JC (1991) Gas exchange characteristics of Populus trichocarpa, Populus deltoides and Populus trichocarpa × P. deltoides clones. Tree Physiol 2:145–159

    Google Scholar 

  • Bender J, Fink GR (1995) Epigenetic control of an endogenous gene family is revealed by a novel blue fluorescent mutant of Arabidopsis. Cell 83:725–734

    Article  PubMed  CAS  Google Scholar 

  • Berry J, Downton WJS (1982) Environmental regulation of photosynthesis. In: Govindjee R (ed) Photosynthesis, vol II. Academia Press, New York, pp 163–343

    Google Scholar 

  • Bowes G (1993) Facing the inevitable: plants and increasing atmospheric CO2. Annu Rev Plant Physiol Mol Biol 44:309–332

    Article  CAS  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F, Hagège D, Maury S (2005) DNA methylating and demethylating treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    Article  PubMed  CAS  Google Scholar 

  • Cervera MT, Ruiz-Garcia L, Martinez-Zapater JM (2002) Analysis of DNA methylation in Arabidopsis thaliana based on methylation-sensitive AFLP markers. Mol Genet Genomics 268:543–552

    Article  PubMed  CAS  Google Scholar 

  • Ceulemans R, Impens U, Steenackers V (1987) Variations in photosynthetic, anatomical, and enzymatic leaf traits and correlations with growth in recently selected Populus hybrids. Can J For Res 17:273–283

    Article  CAS  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Faville MJ, Silvester WB, Allan Green TG, Jermyn WA (1999) Photosynthetic characteristics of three asparagus cultivars differing in yield. Crop Sci 39:1070–1077

    Article  Google Scholar 

  • Finnegan EJ, Peacock WJ, Dennis ES (1996) Reduced DNA methylation in Arabidopsis thaliana results in abnormal plant development. Proc Natl Acad Sci USA 93:8449–8454

    Article  PubMed  CAS  Google Scholar 

  • Geiman TM, Robertson KD (2002) Chromatin remodeling, histone modifications, and DNA methylation-how does it all fit together? J Cell Biochem 87:117–125

    Article  PubMed  CAS  Google Scholar 

  • Goubely C, Arnaud P, Tatout C, Heslop-Harrison JS, Deragon JM (1999) S1 SINE retroposons are methylated at symmetrical and non-symmetrical positions in Brassica napus: identification of a preferred target site for asymmetrical methylation. Plant Mol Biol 39:243–255

    Article  PubMed  CAS  Google Scholar 

  • Gourcilleau D, Bogeat-Triboulot M, Thiec DL, Lafon-Placette C, Delaunay A, El-Soud WA, Brignolas F, Maury S (2010) DNA methylation and histone acetylation: genotypic variations in hybrid poplars, impact of water deficit and relationships with productivity. Ann For Sci 67:208

    Article  Google Scholar 

  • Gruenbaum Y, Naveh-Many T, Cedar H, Razin A (1981) Sequence specificity of methylation in higher plant DNA. Nature 292:860–862

    Article  PubMed  CAS  Google Scholar 

  • Hanai LR, Floh EIS, Fungaro MHP, Santa-Catarina C, Matias de Paula F, Viana AM, Vieira MLC (2010) Methylation patterns revealed by MSAP profiling in genetically stable somatic embryogenic cultures of Ocotea catharinensis (Lauraceae). In Vitro Cell Dev Biol Plant 46:368–377

    Article  CAS  Google Scholar 

  • Hauben M, Haesendonckx B, Standaert E, Kelen KVD, Azmi A, AkpoH BFV, Guisez Y, Bots M, Lambert B, Laga B, Block MD (2009) Energy use efficiency is characterized by an epigenetic component that can be directed through artificial selection to increase yield. Proc Natl Acad Sci USA 106:20109–20114

    PubMed  CAS  Google Scholar 

  • Idso SB (1991) A general relationship between CO2-induced increases in net photosynthesis and concomitant reductions in stomatal conductance. Environ Exp Bot 31:381–383

    Article  Google Scholar 

  • Ingelbrecht I, Houdt HV, Montagu MV, Depicker A (1994) Posttranscriptional silencing of reporter transgenes in tobacco correlates with DNA methylation. Proc Natl Acad Sci USA 91:10502–10506

    Article  PubMed  CAS  Google Scholar 

  • Isebrands JG, Ceulemans R, Wiard BM (1988) Genetics variation in photosynthetic traits among Populus clones in relation to yield. Plant Physiol Biochem 26:427–437

    Google Scholar 

  • Jablonka E, Goiten R, Marcus M, Cedar H (1985) DNA hypomethylation causes an increase in DNase I sensitivity and advance in the timing of replication of the entire X chromosome. Chromosoma 93:152–156

    Article  PubMed  CAS  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T, Miura A, Choi Y, Kinoshita Y, Cao X, Jacobsen SE, Fischer RL, Kakutani T (2004) One-way control of FWA imprinting in Arabidopsis endosperm by DNA methylation. Science 303:521–523

    Article  PubMed  CAS  Google Scholar 

  • Kovarik A, Matyásek R, Leitch A, Gazdová B, Fulnecek J, Bezdek M (1997) Variability in CpNpG methylation in higher plant genomes. Gene 204:25–33

    Article  PubMed  CAS  Google Scholar 

  • Lira-Medeiros CF, Parisod C, Fernandes RA, Mata CS, Cardoso MA, Ferreira PCG (2010) Epigenetic variation in mangrove plants occurring in contrasting natural environment. PLoS One 5:e10326

    Article  PubMed  Google Scholar 

  • Long Y, Xia W, Li RY, Wang J, Shao MQ, Feng J, King GJ, Meng JL (2011) Epigenetic QTL mapping in Brassica napus. Genetics Published Articles Ahead of Print:111.131615

  • McClelland M (1983) The frequency and distribution of methylatable DNA sequences in leguminous plant protein coding genes. J Mol Evol 19:346–354

    Article  PubMed  CAS  Google Scholar 

  • Messeguer R, Ganal MW, Steffens JC, Tanksley SD (1991) Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA. Plant Mol Biol 16:753–777

    Article  PubMed  CAS  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nakao M (2001) Epigenetics: interaction of DNA methylation and chromatin. Gene 278:25–31

    Article  PubMed  CAS  Google Scholar 

  • Ngernprasirtsiri J, Kobayashi H, Akazawa T (1989) Transcriptional regulation and DNA methylation of nuclear genes for photosynthesis in nongreen plant cells. Proc Natl Acad Sci USA 86:7919–7923

    Article  PubMed  CAS  Google Scholar 

  • Ngernprasirtsiri J, Kobayashi H, Akazawa T (1990) DNA Methylation is a determinative element of photosynthesis gene expression in amyloplasts from liquid-cultured cells of sycamore (Acer pseudoplatanus L.). Cell Struct Funct 15:285–293

    Article  PubMed  CAS  Google Scholar 

  • Noormets A, Sôber A, Pell EJ, DicksonI RE, Podila GK, Sôber J, Isebrands JG, Karnosky DF (2001) Stomatal and non-stomatal limitation to photosynthesis in two trembling aspen (Populus tremuloides Michx.) clones exposed to elevated CO2 and/or O3. Plant Cell Environ 24:327–336

    Article  CAS  Google Scholar 

  • Pan Q, Wang Z, Quebedeaux B (1998) Responses of the apple plant to CO2 enrichment: changes in photosynthesis, sorbitol, other soluble sugars, and starch. Aust J Plant Physiol 25:293–297

    Article  CAS  Google Scholar 

  • Pavlopoulou A, Kossida S (2007) Plant cytosine-5 DNA methyltransferases: structure, function, and molecular evolution. Genomics 90:530–541

    Article  PubMed  CAS  Google Scholar 

  • Reyna-López GE, Simpson J, Ruiz-Herrera J (1997) Differences in DNA methylation patterns are detectable during the dimorphic transition of fungi by amplification of restriction polymorphisms. Mol Gen Genet 253:703–710

    Article  PubMed  Google Scholar 

  • Sha AH, Lin XH, Huang JB, Zhang DP (2005) Analysis of DNA methylation related to rice adult plant resistance to bacterial blight based on methylation-sensitive AFLP (MSAP) analysis. Mol Genet Genomics 273:484–490

    Article  PubMed  CAS  Google Scholar 

  • Shikawa I (2001) Surveying CpG methylation at 5′-CCGG in the genomes of rice cultivars. Plant Mol Biol 45:31–39

    Article  Google Scholar 

  • Tan MP (2010) Analysis of DNA methylation of maize in response to osmotic and salt stress based on methylation-sensitive amplified polymorphism. Plant Physiol Biochem 48:21–26

    Article  PubMed  CAS  Google Scholar 

  • Tixier MH, Sourdille RM, Leroy P, Bernard M (1997) Detection of wheat microsatellites using a non-radioactive silver-nitrate staining method. J Genet Breed 51:175–177

    CAS  Google Scholar 

  • Tsaftaris AS, Kafka M, Polidoros A, Tani W (1997) Epigenetic changes in maize DNA and heterosis. In: CIMMYT. Abstract. The genetics and exploitation of heterosis in crops. International Symposium, Mexico City, pp 112–113

  • Xiong LZ, Xu CG, Maroof MA, Zhang QF (1999) Patterns of cytosine methylation in an elite rice hybrid and its parental lines, detected by a methylation-sensitive amplification polymorphism technique. Mol Gen Genet 261:439–446

    Article  PubMed  CAS  Google Scholar 

  • Yang MS, Lang HY, Gao BJ, Wang JM, Zheng JB (2003) Insecticidal activity and transgene expression stability of transgenic hybrid poplar clone 741 carrying two insect-resistant genes. Silvae Genetica 52:5–6

    Google Scholar 

  • Zhang ZY, Li FL (1992) Studies on chromosome doubling triploid breeding of white poplar (І). J Beijing For Univ 14:52–58

    Google Scholar 

  • Zhang D, Zhang Z, Yang K, Li B (2004) Genetic mapping in (Populus tomentosa × Populus bolleana) and P. tomentosa Carr. using AFLP markers. Theor Appl Genet 108:657–662

    Article  PubMed  CAS  Google Scholar 

  • Zhang DQ, Zhang ZY, Yang K (2006a) QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar (Populous tomentosa × P.bolleana) × P. tomentosa. Can J For Res 36:2015–2023

    Article  CAS  Google Scholar 

  • Zhang XY, Yazaki J, Sundaresan A, Cokus S, Chan SWL, Chen H, Henderson IR, Shinn P, Pellegrini M, Jacobsen SE, Ecker JR (2006b) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Zhang Z, Yang K (2007a) Identification of AFLP markers associated with embryonic root development in Populus tomentosa Carr. Silvae Genetica 56:27–31

    Google Scholar 

  • Zhang MS, Yan HY, Zhao N, Lin XY, Pang JS, Xu KZ, Liu LX, Liu B (2007b) Endosperm-specific hypomethylation, and meiotic inheritance and variation of DNA methylation level and pattern in sorghum (Sorghum bicolor L.) inter-strain hybrids. Theor Appl Genet 115:195–207

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Shiu S, Cal A, Borevitz JO (2008) Global analysis of genetic, epigenetic and transcriptional polymorphisms in Arabidopsis thaliana using whole genome tiling arrays. PLoS Genet 4:e1000032

    Article  PubMed  Google Scholar 

  • Zhao XX, Chai Y, Liu B (2007) Epigenetic inheritance and variation of DNA methylation level and pattern in maize intra-specific hybrids. Plant Sci 172:930–938

    Article  CAS  Google Scholar 

  • Zhao Y, Yu S, Xing C, Fan S, Song M (2008) Analysis of DNA methylation in cotton hybrids and their parents. Mol Biol 42:169–178

    Article  CAS  Google Scholar 

  • Zhao XY, Ma KF, Zhang M, Bian JL, Jiao WY, Zhang ZY (2011) Comparative analysis of the photosynthetic characteristics of three-year-old Populus tomentosa clones. For Res 24:370–378

    Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the following sources: State Key Basic Research Program of China (no. 2012CB114506) and Project of the National Natural Science Foundation of China (no. 31170622, 30872042).

Data archiving statement

Sequence data from this article have been deposited with the GenBank Data Library under the accession nos. JX041655–JX041698 and JX065417–JX065431.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Zhang.

Additional information

Communicated by A. Brunner

Zhiyi Zhang: Deceased

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 73 kb)

ESM 2

(DOC 51 kb)

ESM 3

(DOC 110 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K., Song, Y., Jiang, X. et al. Photosynthetic response to genome methylation affects the growth of Chinese white poplar. Tree Genetics & Genomes 8, 1407–1421 (2012). https://doi.org/10.1007/s11295-012-0527-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0527-2

Keywords

Navigation