Skip to main content

Advertisement

Log in

The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Witches’ broom disease of Theobroma cacao L. is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa. Infection of flower cushions by M. perniciosa results in parthenocarpy. Healthy and parthenocarpic immature cacao pods were obtained from seven cacao clones. Microscopic observations of parthenocarpic pods from two clones confirmed that fruits lack viable seed. Septate mycelia colonized parthenocarpic pods, but were absent from healthy pods. Parthenocarpic pods had increased concentrations of leucine, methionine, serine, phenylalanine, and valine. Major transport metabolites sucrose and asparagine were decreased by 63 and 40 %, respectively, during parthenocarpy. M. perniciosa expressed sequence tags (ESTs) related to detoxification (MpSOD2 and MpCTA1) and nutrient acquisition (MpAS, MpAK, MpATG8, MpPLY, and MpPME) were induced in parthenocarpic pods. Most M. perniciosa ESTs related to plant hormone biosynthesis were repressed (MpGAox, MpCPS, MpDES, MpGGPPS, and MpCAO) in parthenocarpic pods. RT-qPCR analysis was conducted for 54 defense-related cacao ESTs and 93 hormone-related cacao ESTs. Specific cacao ESTs related to plant defense were induced (TcPR5, TcChi4, TcThau-ICS) while others were repressed (TcPR1, TcPR6, TcP12, and TcChiB). Cacao ESTs related to GA biosynthesis (TcGA20OX1B) were repressed in parthenocarpic pods. Cacao ESTs putatively related to maintaining cytokinin (TcCKX3 and TcCKX5) and IAA (TcGH3.17a, TcGH3.1, TcARF18) homeostasis were induced in parthenocarpic pods, suggesting an attempt to regulate cytokinin and auxin concentrations. In conclusion, M. perniciosa expresses specific sets of transcripts targeting nutrient acquisition and survival while altering the host physiology without causing significant necrosis resulting in parthenocarpy. Only a general host defense response is elicited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aime MC, Phillips-Mora W (2005) The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae. Mycologia 97(5):1012–1022. doi:10.3852/mycologia.97.5.1012

    Article  PubMed  CAS  Google Scholar 

  • Argout X, Salse J, Aury J-M, Guiltinan MJ, Droc G, Gouzy J, Allegre M, Chaparro C, Legavre T, Maximova SN, Abrouk M, Murat F, Fouet O, Poulain J, Ruiz M, Roguet Y, Rodier-Goud M, Barbosa-Neto JF, Sabot F, Kudrna D, Ammiraju JSS, Schuster SC, Carlson JE, Sallet E, Schiex T, Dievart A, Kramer M, Gelley L, Shi Z, Berard A, Viot C, Boccara M, Risterucci AM, Guignon V, Sabau X, Axtell MJ, Ma Z, Zhang Y, Brown S, Bourge M, Golser W, Song X, Clement D, Rivallan R, Tahi M, Akaza JM, Pitollat B, Gramacho K, D’Hont A, Brunel D, Infante D, Kebe I, Costet P, Wing R, McCombie WR, Guiderdoni E, Quetier F, Panaud O, Wincker P, Bocs S, Lanaud C (2011) The genome of Theobroma cacao. Nat Genet 43(2):101–108. doi:10.1038/ng.736

    Article  PubMed  CAS  Google Scholar 

  • Bae H, Kim S-H, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Bioch 46(2):174–188. doi:10.1016/j.plaphy.2007.10.014

    Article  CAS  Google Scholar 

  • Bae H, Sicher RC, Kim MS, Kim S-H, Strem MD, Melnick RL, Bailey BA (2009) The beneficial endophyte Trichoderma hamatum isolate DIS 219b promotes growth and delays the onset of the drought response in Theobroma cacao. J Exp Bot 60(11):3279–3295. doi:10.1093/jxb/erp165

    Article  PubMed  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Antúnez de Mayolo G, Guiltinan MJ, Verica JA, Maximova SN, Bowers JH (2005) Developmental expression of stress response genes in Theobroma cacao leaves and their response to Nep1 treatment and a compatible infection by Phytophthora megakarya. Plant Physiol Bioch 43(6):611–622. doi:10.1016/j.plaphys.2005.04.006

    Article  CAS  Google Scholar 

  • Bailey BA, Bae H, Strem MD, Roberts DP, Thomas SE, Crozier J, Samuels GJ, Choi IY, Holmes KA (2006) Fungal and plant gene expression during the colonization of cacao seedlings by endophytic isolates of four Trichoderma species. Planta 224(6):1449–1464. doi:10.1007/s00425-006-0314-0

    Article  PubMed  CAS  Google Scholar 

  • Baker RP, Hasenstein KH, Zavada MS (1997) Hormonal changes after compatible and incompatible pollination in Theobroma cacao L. HortScience 32(7):1231–1234

    CAS  Google Scholar 

  • Bartel B (1997) Auxin biosynthesis. Ann Rev Plant Physiol 48(1):51–66. doi:10.1146/annurev.arplant.48.1.51

    Article  CAS  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23(1):69–80. doi:10.1105/tpc.110.079079

    Article  PubMed  CAS  Google Scholar 

  • Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997) The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88(1):57–63. doi:10.1016/s0092-8674(00)81858-9

    Article  PubMed  CAS  Google Scholar 

  • Carter CJ, Thornburg RW (2004) Tobacco nectarin V is a flavin-containing berberine bridge enzyme-like protein with glucose oxidase activity. Plant Physiol 134(1):460–469. doi:10.1104/pp. 103.027482

    Article  PubMed  CAS  Google Scholar 

  • Chaves FC, Gianfagna TJ (2006) Necrotrophic phase of Moniliophthora perniciosa causes salicylic acid accumulation in infected stems of cacao. Physiol Mol Plant Pathol 69(1–3):104–108. doi:10.1016/j.pmpp. 2007.02.003

    Article  CAS  Google Scholar 

  • Dangl JL, Jones JDG (2001) Plant pathogens and integrated defence responses to infection. Nature 411:826–833. doi:10.1038/35081161

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (ed) (2010) The plant hormones: their nature, occurrence, and functions, vol 3. Plant hormones biosynthesis, signal transduction, action! Springer, Dordrecht. doi:10.1007/978-1-4020-2686-7_1

  • Emery NA (2006) Cytokinin and seed development. In: Basra AS (ed) Handbook of seed science and technology. Food Products, Binghamton, pp 63–94

    Google Scholar 

  • Evans HC, Holmes KA, Reid AP (2003) Phylogeny of the frosty pod rot pathogen of cocoa. Plant Pathol 52(4):476–485. doi:10.1046/j.1365-3059.2003.00867.x

    Article  CAS  Google Scholar 

  • Finkelstein RR, Lynch TJ (2000) The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12(4):599–610. doi:10.1105/tpc.12.4.599

    PubMed  CAS  Google Scholar 

  • Goodwin PH, Li J, Jin S (2000) Evidence for sulfate derepression of an arylsulfatase gene of Colletotrichum gloeosporioides f. sp. malvae during infection of round-leaved mallow, Malva pusilla. Physiol Mol Plant Pathol 57(4):169–176. doi:10.1006/pmpp.2000.0295

    Article  CAS  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10(5):453–460. doi:10.1016/j.pbi.2007.08.014

    Article  PubMed  CAS  Google Scholar 

  • Hebbar KP (2007) Cacao diseases: a global perspective from an industry point of view. Phytopathology 97(12):1658–1663. doi:10.1094/PHYTO-97-12-1658

    Article  PubMed  Google Scholar 

  • Hegnauer H, Nyhlén LE, Rast DM (1985) Ultrastructure of native and synthetic Agaricus bisporus melanins—implications as to the compartmentation of melanogenesis in fungi. Exp Mycol 9(3):1–29. doi:10.1016/0147-5975(85)90018-0

    Article  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101(27):10205–10210. doi:10.1073/pnas.0403218101

    Article  PubMed  CAS  Google Scholar 

  • Iriti M, Rossoni M, Borgo M, Ferrara L, Faoro F (2005) Induction of resistance to gray mold with benzothiadiazole modifies amino acid profile and increases proanthocyanidins in grape: primary versus secondary metabolism. J Agric Food Chem 53(23):9133–9139. doi:10.1021/jf050853g

    Article  PubMed  CAS  Google Scholar 

  • Iwahori S, Tominaga S, Yamasaki T (1988) Stimulation of fruit growth of kiwifruit, Actinidia chinensis Planch., by N-(2-chloro-4-pyridyl)-N′-phenylurea, a diphenylurea-derivative cytokinin. Sci Hort 35(1–2):109–115. doi:10.1016/0304-4238(88)90042-8

    Article  CAS  Google Scholar 

  • Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chemi-Biol 130–132:499–525. doi:10.1016/s0009-2797(00)00295-7

    Google Scholar 

  • Katagari F, Glazebrook J (2009) Pattern discovery in expression profiling data. Curr Protoc Mol Biol 22:22.5.1–22.5.11. doi:0.1002/0471142727.mb2205s69

    Google Scholar 

  • Kerk D, Bulgrien J, Smith DW, Gribskov M (2003) Arabidopsis proteins containing similarity to the universal stress protein domain of bacteria. Plant Physiol 131(3):1209–1219. doi:10.1104/pp. 102.016006

    Article  PubMed  CAS  Google Scholar 

  • Kilaru A, Bailey BA, Hasenstein KH (2007) Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol Lett 274(2):238–244. doi:10.1111/j.1574-6968.2007.00837.x

    Article  PubMed  CAS  Google Scholar 

  • Kim IS, Okubo H, Fujieda K (1992) Endogenous levels of IAA in relation to parthenocarpy in cucumber (Cucumis sativus L.). Sci Hort 52(1–2):1–8. doi:10.1016/0304-4238(92)90002-t

    Article  CAS  Google Scholar 

  • Lange T, Hedden P, Graebe JE (1994) Expression cloning of a gibberellin 20-oxidase, a multifunctional enzyme involved in gibberellin biosynthesis. Proc Natl Acad Sci USA 91(18):8552–8556

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Sodek L, Parry MAJ, Shewry PR, Halford NG (2007) Asparagine in plants. Ann App Biol 150(1):1–26. doi:10.1111/j.1744-7348.2006.00104.x

    Article  CAS  Google Scholar 

  • Leal GA, Albuquerque PSB, Figueira A (2007) Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol Plant Pathol 8(3):279–292. doi:0.1111/j.1364-3703.2007.00393.x

    Article  PubMed  CAS  Google Scholar 

  • Leal GA, Gomes LH, Albuquerque PSB, Tavares FCA, Figueira A (2010) Searching for Moniliophthora perniciosa pathogenicity genes. Fungal Biol 114(10):842–854. doi:10.1016/j.funbio.2010.07.009

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477. doi:10.1016/s1534-5807(04)00099-1

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90(5):929–938. doi:10.1016/s0092-8674(00)80357-8

    Article  PubMed  CAS  Google Scholar 

  • Lima JO, Pereira JF, Rincones J, Barau JG, Araújo EF, Pereira GAG, QueirozI MV (2009) The glyceraldehyde-3-phosphate dehydrogenase gene of Moniliophthora perniciosa, the causal agent of witches’ broom disease of Theobroma cacao. Genet Mol Biol 132(2):362–366

    Article  Google Scholar 

  • Lindberg G, Molin K (1949) Notes on the physiology of the cocoa parasite Marasmius perniciosus. Physiol Plantarum 2(2):138–144

    Article  Google Scholar 

  • Marelli J-P, Maximova S, Gramacho K, Kang S, Guiltinan M (2009) Infection biology of Moniliophthora perniciosa on Theobroma cacao and alternate solanaceous hosts. Trop Plant Biol 2(3):149–160. doi:10.1007/s12042-009-9038-1

    Article  Google Scholar 

  • Maroto JV, Miguel A, Lopez-Galarza S, San Bautista A, Pascual B, Alagarda J, Guardiola JL (2005) Parthenocarpic fruit set in triploid watermelon induced by CPPU and 2,4-D applications. Plant Growth Regul 45(3):209–213. doi:10.1007/s10725-005-3992-x

    Article  CAS  Google Scholar 

  • Martin RC, Mok MC, Mok DWS (1999) Isolation of a cytokinin gene, ZOG1, encoding zeatin O-glucosyltransferase from Phaseolus lunatus. Procthe Natl Acad Sci USA 96(1):284–289. doi:10.1073/pnas.96.1.284

    Article  CAS  Google Scholar 

  • Martinelli F, Uratsu SL, Reagan RL, Chen Y, Tricoli D, Fiehn O, Rocke DM, Gasser CS, Dandekar AM (2009) Gene regulation in parthenocarpic tomato fruit. J Exp Bot 60(13):3873–3890. doi:10.1093/jxb/erp227

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki F, Shimizu M, Wariishi H (2008) Proteomic and metabolomic analyses of the white-rot fungus Phanerochaete chrysosporium exposed to exogenous benzoic acid. J Proteome Res 7(6):2342–2350. doi:10.1021/pr700617s

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt LW, Bellato CM, Rincones J, Azevedo RA, Cascardo JCM, Pereira GAG (2006) In vitro production of biotrophic-like cultures of Crinipellis perniciosa, the casual agent of witches’ broom disease of Theobroma cacao. Curr Microbiol 52(3):191–196. doi:0.1007/s00284-005-0182-z

    Article  PubMed  CAS  Google Scholar 

  • Meinhardt L, Rincones J, Bailey B, Aime M, Griffith G, Zhang D, Pereira G (2008) Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: what’s new from this old foe? Mol Plant Pathol 9(5):577–588. doi:10.1111/j.1364-3703.2008.00496.x

    Article  PubMed  Google Scholar 

  • Mende K, Homann V, Tudzynski B (1997) The geranylgeranyl diphosphate synthase gene of Gibberella fujikuroi: isolation and expression. Mol Gen Genet 255(1):96–105. doi:10.1007/s004380050477

    Article  PubMed  CAS  Google Scholar 

  • Mondego J, Carazzolle M, Costa G, Formighieri E, Parizzi L, Rincones J, Cotomacci C, Carraro D, Cunha A, Carrer H, Vidal R, Estrela R, Garcia O, Thomazella D, de Oliveira B, Pires A, Rio M, Araujo M, de Moraes M, Castro L, Gramacho K, Goncalves M, Neto J, Neto A, Barbosa L, Guiltinan M, Bailey B, Meinhardt L, Cascardo J, Pereira G (2008) A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao. BMC Genomics 9(1):548. doi:10.1186/1471-2164-9-548

    Article  PubMed  Google Scholar 

  • Peretó JG, Beltrán JP, García-Martínez JL (1988) The source of gibberellins in the parthenocarpic development of ovaries on topped pea plants. Planta 175(4):493–499. doi:10.1007/bf00393070

    Article  Google Scholar 

  • Pettipher GL (1986) Analysis of cocoa pulp and the formulation of a standardised artificial cocoa pulp medium. J Sci Food Agric 37(3):297–309. doi:10.1002/jsfa.2740370315

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45. doi:10.1093/nar/29.9.e45

    Article  PubMed  CAS  Google Scholar 

  • Pungartnik C, Melo SCO, Basso TS, Macena WG, Cascardo JCM, Brendel M (2009) Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet Biol 46(6–7):461–472. doi:10.1016/j.fgb.2009.03.007

    Article  PubMed  CAS  Google Scholar 

  • Richardson M, Valdes-Rodriguez S, Blanco-Labra A (1987) A possible function for thaumatin and a TMV-induced protein suggested by homology to a maize inhibitor. Nature 327:432–434

    Article  Google Scholar 

  • Rieu I, Powers SJ (2009) Real-time quantitative RT-PCR: design, calculations, and statistics. Plant Cell 21(4):1031–1033. doi:10.1105/tpc.109.066001

    Article  PubMed  CAS  Google Scholar 

  • Roessner U, Luedemann A, Brust D, Fiehn O, Linke T, Willmitzer L, Fernie AR (2001) Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems. Plant Cell 13(1):11–29. doi:10.1105/tpc.13.1.11

    PubMed  CAS  Google Scholar 

  • Santos RX, Melo SCO, Cascardo JCM, Brendel M, Pungartnik C (2008) Carbon source-dependent variation of acquired mutagen resistance of Moniliophthora perniciosa: similarities in natural and artificial systems. Fungal Genet Biol 45(6):851–860. doi:10.1016/j.fgb.2008.02.005

    Article  PubMed  CAS  Google Scholar 

  • Scarpari LM, Meinhardt LW, Mazzafera P, Pomella AWV, Schiavinato MA, Cascardo JCM, Pereira GAG (2005) Biochemical changes during the development of witches’ broom: the most important disease of cocoa in Brazil caused by Crinipellis perniciosa. J Exp Bot 56(413):865–877. doi:10.1093/jxb/eri079

    Article  PubMed  CAS  Google Scholar 

  • Schmülling T, Werner T, Riefler M, Krupková E, Bartrina y Manns I (2003) Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis, and other species. Journal of Plant Research 116(3):241–252. doi:10.1007/s10265-003-0096-4

    Article  PubMed  Google Scholar 

  • Schwan RF (1998) Cocoa fermentations conducted with a defined microbial cocktail inoculum. Appl Environ Microbiol 64(4):1477–1483

    PubMed  CAS  Google Scholar 

  • Seo HS, Song JT, Cheong J-J, Lee Y-H, Lee Y-W, Hwang I, Lee JS, Choi YD (2001) Jasmonic acid carboxyl methyltransferase: a key enzyme for jasmonate-regulated plant responses. Proc Natl Acad Sci 98(8):4788–4793. doi:10.1073/pnas.081557298

    Article  PubMed  CAS  Google Scholar 

  • Serrani JC, Sanjuán R, Ruiz-Rivero O, Fos M, García-Martínez JL (2007) Gibberellin regulation of fruit set and growth in tomato. Plant Physiol 145(1):246–257. doi:10.1104/pp. 107.098335

    Article  PubMed  CAS  Google Scholar 

  • Sharma SS, Dietz K-J (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726. doi:10.1093/jxb/erj073

    Article  PubMed  CAS  Google Scholar 

  • Shi Z, Maximova S, Liu Y, Verica J, Guiltinan M (2010) Functional analysis of the Theobroma cacao NPR1 gene in Arabidopsis. BMC Plant Biol 10(1):248. doi:10.1186/1471-2229-10-248

    Article  PubMed  Google Scholar 

  • Spoel S, Koornneef A, Claessens S, Korzelius J, Van Pelt J, Mueller M, Buchala A, Metraux J, Brown R, Kazan K (2003) NPR1 modulates cross-talk between salicylate- and jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15(3):760–770. doi:10.1105/tpc.009159

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan U, Staines HJ, Bruce A (1992) Influence of media type on antagonistic modes of Trichoderma sp against wood decay basidiomycetes. Mat Organ 27(4):301–321

    Google Scholar 

  • Staswick PE, Serban B, Rowe M, Tiryaki I, Maldonado MT, Maldonado MC, Suza W (2005) Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid. Plant Cell 17(2):616–627. doi:10.1105/tpc.104.026690

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Kawaide H, Kamiya Y (1998) Gibberellin biosynthesis in Gibberella fujikuroi: cloning and characterization of the copalyl diphosphate synthase gene. Curr Genet 34(3):234–240. doi:10.1007/s002940050392

    Article  PubMed  CAS  Google Scholar 

  • Tudzynski B, Mihlan M, Rojas MC, Linnemannstöns P, Gaskin P, Hedden P (2003) Characterization of the final two genes of the gibberellin biosynthesis gene cluster of Gibberella fujikuroi. J Biol Chem 278(31):28635–28643. doi:10.1074/jbc.M301927200

    Article  PubMed  CAS  Google Scholar 

  • Veneault-Fourrey C, Barooah M, Egan M, Wakley G, Talbot NJ (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science 312(5773):580–583. doi:10.1126/science.1124550

    Article  PubMed  CAS  Google Scholar 

  • Verica JA, Maximova SN, Strem MD, Carlson JE, Bailey BA, Guiltinan MJ (2004) Isolation of ESTs from cacao (Theobroma cacao L.) leaves treated with inducers of the defense response. Plant Cell Rep 23:404–413. doi:10.1007/s00299-004-0852-5

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Chang P, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM, Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6(8):1077–1085. doi:10.1105/tpc.6.8.1077

    PubMed  CAS  Google Scholar 

  • Zaparoli G, Garcia O, Medrano F, Tiburcio R, Costa G, Pereira G (2009) Identification of a second family of genes in Moniliophthora perniciosa, the causal agent of Witches’ Broom disease in cacao, encoding necrosis inducing proteins similar to cerato platanins. Mycol Res 113(1):61–72

    Article  PubMed  CAS  Google Scholar 

  • Zhang C, Lee U, Tanabe K (2008) Hormonal regulation of fruit set, parthenogenesis induction and fruit expansion in Japanese pear. Plant Growth Regula 55(3):231–240. doi:10.1007/s10725-008-9279-2

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel L. Melnick.

Additional information

Communicated by R. Sederoff

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 164 kb)

ESM 2

(PDF 178 kb)

ESM 3

(PDF 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melnick, R.L., Marelli, JP., Sicher, R.C. et al. The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genetics & Genomes 8, 1261–1279 (2012). https://doi.org/10.1007/s11295-012-0513-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0513-8

Keywords

Navigation