Skip to main content

Advertisement

Log in

Molecular cloning and analysis of apple HcrVf resistance gene paralogs in a collection of related Malus species

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Few complete genes belonging to the receptor-like protein class of plant resistance (R) genes (called HcrVf genes in Malus) have been cloned from apple cultivars. To date, the HcrVf2 gene from the Rvi6 locus of ‘Florina’, a derivative of Malus × floribunda 821, is the only cloned apple scab R gene with a proven function. The breakdown of the Rvi6 scab resistance in several apple growing regions has forced the search for new resistance sources for R gene pyramiding through traditional and biotechnological breeding. Marker-assisted breeding is aimed at the selection of the desired R gene combinations but might be extended for monitoring putative risks of resistance breakdown in potential scab R gene donors. Here we report on a marker-based screen of Rvi6 homologues supplemented by a polymerase chain reaction (PCR)-based full-length cloning of HcrVf paralogs. Known Rvi6 markers were analysed in a sub-set of accessions selected by a preceding SSR-based genetic relationship analysis from a large Malus species germplasm collection, which has been evaluated for scab resistance in an unsprayed orchard for a period of 3 years. The Rvi6 breakdown in several M. × floribunda accessions was confirmed, and several other Malus species putatively related to M. × floribunda were also infected by scab. The selected sub-cluster consisting of 40 accessions, including all M. × floribunda, two Malus × micromalus and two Malus baccata accessions, was screened for Rvi6 markers CH-Vf1-SSR and AL07-SCAR and for the presence of HcrVf2 by using gene-specific primers. The two M. × micromalus accessions, which proved to be identical genotypes, were found to be closely related to M. × floribunda. They also displayed the Rvi6 markers and could be infected by race (5,6,7) scab isolate Vi158. To verify the assumed existence of the HcrVf2 gene in M. × micromalus, a PCR-based cloning method was used to clone full-length HcrVf paralogs from this species and additionally from a scab-susceptible M. baccata genotype also showing the Rvi6 markers. The M. × micromalus gene MAM31 was identified as an identical copy of HcrVf2. Another HcrVf-like gene (MAM6) newly cloned from M. × micromalus showed 95 % similarity to HcrVf2. MAM6 was chosen for the development of a gene-specific PCR marker, which was analysed in the selected apple group and additionally mapped in an apple progeny derived from a cross with M. × micromalus. The cloning method described in this paper might be used in future to mine for more HcrVf gene variants to develop highly specific markers for R gene deployment in traditional breeding and to use cloned genes for gene transfer and functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barbara DJ, Roberts AL, Xu X-M (2008) Virulence characteristics of apple scab (Venturia inaequalis) isolates from monoculture and mixed orchards. Plant Pathology 57:552–561

    Article  Google Scholar 

  • Beckerman J, Chatfield J, Draper E (2009) A 33-year evaluation of resistance and pathogenicity in the apple scab-crab–apples pathosystem. HortScience 44:599–608

    Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavini S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Nat Acad Sci USA 101:886–890

    Article  PubMed  CAS  Google Scholar 

  • Bénaouf G, Parisi L (2000) Genetics of host–pathogen relationship between Venturia inaequalis races 6 and 7 and Malus species. Phytopathology 90:236–242

    Article  PubMed  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2009a) Identification and molecular analysis of candidate genes homologous to HcrVf genes for scab resistance in apple. Plant Breeding 126:84–91

    Article  Google Scholar 

  • Boudichevskaia A, Flachowsky H, Dunemann F (2009b) Identification and molecular characterization of Vf-like candidate genes in cultivated apples and selections from Malus sieversii. Acta Horticulturae 814:747–752

    CAS  Google Scholar 

  • Broggini GAL, Galli P, Parravicini G, Gianfranceschi L, Gessler C, Patocchi A (2009) HcrVf paralogs are present on linkage groups 1 and 6 of Malus. Genome 52:129–138

    Article  PubMed  CAS  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM (2011) Revision of the nomenclature of the differential host–pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  PubMed  CAS  Google Scholar 

  • Caffier V, Didelot F, Pumo B, Causeur D, Durel CE, Parisi L (2010) Aggressiveness of eight Venturia inaequalis isolates virulent or avirulent to the major resistance gene Rvi6 on a non-Rvi6 apple cultivar. Plant Pathology 59:1072–1080

    Article  Google Scholar 

  • Caicedo AL, Schaal BA (2004) Heterogenous evolutionary processes affect R gene diversity in natural populations of Solanum pimpinellifolium. Proc Natl Acad Sci USA 101:17444–17449

    Article  PubMed  CAS  Google Scholar 

  • Crandall CS (1926) Apple breeding at the University of Illinois. Illinois Agr Expt Sta Bull 275:341–600

  • Dayton DF, Williams EB (1970) Additional allelic genes in Malus for scab resistance of two reaction types. J Amer Soc Hort Sci 95:735–736

    Google Scholar 

  • Dodds PN, Lawrence GJ, Ellis JG (2001) Six amino acid changes confined to the leucine-rich repeat B-strand/B-turn motif determine the difference between the P and P2 rust resistance specificities in flax. Plant Cell 13:163–178

    PubMed  CAS  Google Scholar 

  • Dunemann F, Kahnau R, Schmidt H (1994) Genetic relationships in Malus evaluated by RAPD fingerprinting of cultivars and wild species. Plant Breeding 113:150–159

    Article  Google Scholar 

  • Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Vf locus. Tree Gen Genomes 6:627–633

    Article  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    PubMed  CAS  Google Scholar 

  • Fitch WM (1970) Distinguishing homologous from analogous proteins. Syst Zool 19:99–113

    Article  PubMed  CAS  Google Scholar 

  • Galli P, Patocchi A, Broggini GAL, Gessler C (2010) The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Mol. Plant–Microbe. Interactions 5:608–617

    Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Critical Reviews in Plant Sciences 25:473–503

    Article  CAS  Google Scholar 

  • Gladieux P, Zhang X-G, Afoufa-Bastien D, Valdebenito Sanhueza R-M, Sbaghi M, Le Cam B (2008) On the origin and spread of the scab disease of apple: out of Central Asia. PLoS ONE 3(1):e1455. doi:10.1371/journal.pone.0001455

    Article  PubMed  Google Scholar 

  • Guérin F, Gladieux P, Le Cam B (2006) Origin and colonization history of newly virulent strains of the phytopathogenic fungus Venturia inaequalis. Fungal Genetics Biology 44:284–292

    Article  Google Scholar 

  • Hokanson SC, Szewc-McFadden A, Lamboy WF, McFerson JR (1998) Microsatellite (SSR) markers reveal genetic identities, genetic diversity and relationships in a Malus × domestica Borkh. core subset collection. Theor Appl Genet 97:671–683

    Article  CAS  Google Scholar 

  • Jensen RA (2001) Orthologs and paralogs—we need to get it right. Genome Biology 2(8):1002.1–1002.3

    Article  Google Scholar 

  • Joosten MHAJ, Cozijnsen TJ, de Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in a virulence gene. Nature 367:384–386

    Article  PubMed  CAS  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  PubMed  CAS  Google Scholar 

  • Kato S, Ishikawa S, Imakawa S, Komori S, Mikami T, Shimamoto Y (1993) Mitochondrial DNA restriction fragment length polymorphisms in Malus species. Plant Breeding 111:162–165

    Article  CAS  Google Scholar 

  • Király I, Peil A, Halász J, Dunemann F, Hanke M-V, Deák T, Tóth M (2009) Ratio of homozygous and heterozygous Vf genotypes in progenies of Vfvf × Vfvf crosses. Acta Hortic 814:819–824

    Google Scholar 

  • Koch T, Kellerhals M, Gessler C (2000) Virulence pattern of Venturia inaequalis field isolates and corresponding differential resistance in Malus × domestica. J Phytopathol 148:357–364

    Google Scholar 

  • Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, Van De Weg E, Gessler C (2002) Development and characterization of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breeding 10:217–241

    Article  CAS  Google Scholar 

  • Luby JJ (2003) Taxonomic classification and brief history. In: Ferree DC, Warrington IJ (eds) Apples: botany, production and uses. CAB International, Wallingford, pp 1–14

    Chapter  Google Scholar 

  • MacHardy WE (1996) Apple scab: biology, epidemiology, and management. APS, St. Paul, 545 pp

    Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinkle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    Article  PubMed  CAS  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apple with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parisi L, Fouillet V, Schouten HJ, Groenwold R, Laurens F, Didelot F, Evans K, Fischer C, Gennari F, Kemp H, Lateur M, Patocchi A, Thissen J, Tsipouridis C (2004) Variability of the pathogenicity of Venturia inaequalis in Europe. Acta Hortic 663:107–113

    Google Scholar 

  • Parker DM, Hilber UW, Bodmer M, Smith FD, Yao C, Köller W (1995) Production and transformation of conidia of Venturia inaequalis. Phytopathology 85:87–91

    Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens, present situation. Euphytica 124:147–156

    Google Scholar 

  • Patocchi A, Walser M, Tartarini S, Broggini GAL, Gennari F, Sansavini S, Gessler C (2005) Identification by genome scanning approach (GSA) of a microsatellite tightly associated with the apple scab resistance gene Vm. Genome 48:630–636

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Frei A, Frey JE, Kellerhals M (2009) Towards improvement of marker assisted selection of apple scab resistant cultivars: Venturia inaequalis virulence surveys and standardization of molecular marker alleles associated with resistance genes. Mol Breeding 24:337–347

    Article  CAS  Google Scholar 

  • Qian G-Z, Liu L-F, Tang G-G (2006) A new section in Malus (Rosaceae) from China. Ann Bot Fennici 43:68–73

    Google Scholar 

  • Qian G-Z, Liu L-F, Hong D-Y, Tang G-G (2008) Taxonomic study of Malus section Florentinae (Rosaceae). Bot J of the Linnean Society 158:223–227

    Article  Google Scholar 

  • Rehder A (1940) Manual of cultivated trees and shrubs, exclusive of the subtropical and warmer temperate regions, 2nd edn. Macmillan, New York, 996 pp

    Google Scholar 

  • Roberts AL, Crute IR (1994) Apple scab resistance from Malus floribunda 821 (Vf) is rendered ineffective by isolates of Venturia inaequalis from M. floribunda. Norw J Agric Sci 17:403–406

    Google Scholar 

  • Rohlf FJ (2009) NTSYSpc: numerical taxonomy system, ver. 2.21c. Exeter Software, Setauket

  • Saad Eldin MA (2011) Genotypic and phenotypic evaluation of the wild apple collection of the JKI. Martin-Luther-University, Halle-Wittenberg, Germany, Dissertation

    Google Scholar 

  • Sanchez MJ, Bradeen JM (2006) Towards efficient isolation of R gene orthologs from multiple genotypes: optimization of Long Range-PCR. Molecular Breeding 17:137–148

    Article  CAS  Google Scholar 

  • Silfverberg-Dilworth E, Matasci CL, Van de Weg WE, Van Kaauwen MPW, Walzer M, Kodde LP, Soglio V, Gianfranceschi L, Durel CE, Costa F, Yamamoto T, Koller B, Gessler C, Patocchi A (2006) Microsatellite markers spanning the apple (Malus × domestica Borkh.) genome. Tree Genet Genomes 2:202–224

    Article  Google Scholar 

  • Sierotzki H, Eggenschwiler M, Boillat O, McDermott JM, Gessler C (1994) Detection of variation in virulence toward susceptible apple cultivars in natural populations of Venturia inaequalis. Phytopathology 84:1005–1009

    Article  Google Scholar 

  • Shay JR, Hough LF (1952) Evaluation of apple scab resistance in selections of Malus. Am J Botany 39:288–297

    Article  Google Scholar 

  • Song J, Bradeen JM, Naess SK, Raasch JA, Wielgus SM, Haberlach GT, Liu J, Kuang H, Austin-Phillips S, Buell CR, Helgeson JP, Jiang J (2003) Gene RB cloned from Solanum bulbocastanum confers broad spectrum resistance to potato late blight. Proc Natl Amer Sci 100:9128–9133

    Article  CAS  Google Scholar 

  • Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (1999) Development of reliable PCR markers for the selection of the Vf gene conferring scab resistance in apple. Plant Breeding 118:183–186

    Article  Google Scholar 

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang H-B, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant Microbe Interactions 14:505–515

    Article  Google Scholar 

  • Vinatzer BA, Patocchi A, Tartarini S, Gianfranceschi L, Sansavini S, Gessler C (2004) Isolation of two microsatellite markers from BAC clones of the Vf scab resistance region and molecular characterization of scab-resistant accessions in Malus germplasm. Plant Breeding 123:321–326

    Article  CAS  Google Scholar 

  • Way RD, Aldwinckle HS, Lamb RC, Rejman A, Sansavini S, Shen T, Watkins R, Westwood MN, Yoshida Y (1990) Apples (Malus). Acta Horticulturae 290:3–62

    Google Scholar 

  • Williams EB, Brown AG (1968) A new physiological race of Venturia inaequalis incitant of apple scab. Plant Dis Rep 52:799–801

    Google Scholar 

  • Win J, Greenwood DR, Plummer KM (2003) Characterisation of a protein from Venturia inaequalis that induces necrosis in Malus carrying the Vm resistance gene. Physiol Mol Plant Pathol 62:193–202

    Article  CAS  Google Scholar 

  • Xu ML, Korban SS (2002) A cluster of four receptor-like genes resides in the Vf locus that confers resistance to apple scab disease. Genetics 162:1995–2006

    PubMed  CAS  Google Scholar 

  • Xu ML, Korban SS (2004) Somatic variation plays a key role in the evolution of the Vf gene family residing in the Vf locus that confers resistance to apple scab disease. Molecular Phylogenetics and Evolution 32:57–65

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Yang J, Thakur V, Roberts A, Barbara DJ (2008) Population variation of apple scab (Venturia inaequalis) isolates from Asia and Europe. Plant Disease 92:247–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Dunemann.

Additional information

Communicated by E. Dirlewanger

Electronic Supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Multiple amino acid sequence alignment of six HcrVf members identified by full-length cloning in this study (MAM/MAB paralogs) and “reference” genes HcrVf2 (Vinatzer et al. 2001) and HcrVf4 (Broggini et al. 2009). Sequences were compared by ClustalW alignment (Lasergene). Sequence regions used for MAM6 primer design are in bold letters and underlined. (PDF 182 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunemann, F., Gläss, R., Bartsch, S. et al. Molecular cloning and analysis of apple HcrVf resistance gene paralogs in a collection of related Malus species. Tree Genetics & Genomes 8, 1095–1109 (2012). https://doi.org/10.1007/s11295-012-0489-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0489-4

Keywords

Navigation