Skip to main content
Log in

Genetic structure of a galling aphid Slavum wertheimae and its host tree Pistacia atlantica across an Irano-Turanian distribution: from fragmentation to speciation?

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The Irano-Turanian distribution zone in the Levant crossroad is fragmented along different phyto- and zoogeographic and climatic regions, a relict of wider distribution in moister conditions during the Pleistocene and the Holocene. We examined the effect of the disjunct Irano-Turanian distribution among distinct mesic and xeric habitats on the genetic structure of the gall-forming aphid Slavum wertheimae and its obligate host tree Pistacia atlantica in Israel and Jordan. The genetic study included amplified fragment length polymorphism analysis of the trees and aphids and sequence analysis of fragments of the mitochondrial genes cytochrome oxidase I and II (COI and COII) of the aphids. P. atlantica trees did not show any differentiation or genetic structure among climatic regions. S. wertheimae aphids in Israel exhibited two distinct phylogenetic groups, one occupying the mesic region in the north and the other inhabiting the xeric south. The Jordanian aphids clustered within the Israeli northern populations. The results suggest that while the fragmented Irano-Turanian distribution in the Levant does not affect the genetic structure of P. atlantica trees, it promotes genetic differentiation among the aphids’ populations and may initiate an allopatric speciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbot P, Withgott JH (2004) Phylogenetic and molecular evidence for allochronic speciation in gall-forming aphids (Pemphigus). Evolution 58:539–553

    PubMed  CAS  Google Scholar 

  • Abrahamson WG, Weis AE (1997) Evolutionary ecology across three trophic levels: goldenrods, gallmakers, and natural enemies. Princeton University Press, Princeton

    Google Scholar 

  • Akimoto S (1990) Local adaptation and host race formation of a gall-forming aphid in relation to environmental heterogeneity. Oecologia 83:162–170

    Article  PubMed  CAS  Google Scholar 

  • Amiran DHK, Elster J, Gilead M, Rosenman N, Kadmon N, Paran U (1970) Atlas of Israel surveys of israel ministry of labor. Elsevier, Jerusalem and Amsterdam

    Google Scholar 

  • Badyaev AV (2005) Stress-induced variation in evolution: from behavioural plasticity to genetic assimilation. Proceedings of the Royal Society B - Biological Sciences 272:877–886

    Article  Google Scholar 

  • Barazani O, Dudai N, Golan-Goldhirsh A (2003) Comparison of Mediterranean Pistacia lentiscus genotypes by random amplified polymorphic DNA, chemical, and morphological analyses. J Chem Ecol 29:1939–1952

    Article  PubMed  CAS  Google Scholar 

  • Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shlomo R, Inbar M (2012) Patch size of gall-forming aphids: Deme formation revisited. Population Ecology 54:135–144. doi 10.1007/s10144-011-0293-2.

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. TREE 22:148–155

    PubMed  Google Scholar 

  • Bonferroni C (1937) Teoria statistica delle classi e calcolo delle probabilita. In: Volume in Onore di Ricarrdo dalla Volta, Universita di Firenza, pp 1–62

  • Borowicz K (1988) Chorology of trees and shrubs in South-West Asia and adjacent regions. Polish Scientific, Warszawa Poznan

    Google Scholar 

  • Carisio L, Cervella P, Palestrini C, DelPero M, Rolando A (2004) Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses. J Biogeog 31:1149–1162

    Article  Google Scholar 

  • Danin A (1999) Sandstone outcrops—a major refugium of Mediterranean flora in the xeric part of Jordan. Isr J Plant Sci 47:179–187

    Google Scholar 

  • Danin A, Plitmann U (1985) Revision of the plant geographical territories of Israel and Sinai. Plant Syst Evol 156:43–53

    Article  Google Scholar 

  • Fahima T, Roder MS, Wendehake K, Kirzhner VM, Nevo E (2002) Microsatellite polymorphism in natural populations of wild emmer wheat, Triticum dicoccoides, in Israel. Theo Appl Genet 104:17–29

    Article  CAS  Google Scholar 

  • Guillemaud T, Blin A, Simon S, Morel K, Franck P (2011) Weak spatial and temporal population genetic structure in the rosy apple aphid, Dysaphis plantaginea, in French apple orchards. PLoS ONE 6(6): e21263. doi:10.1371/journal.pone.0021263.

  • Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913

    Article  PubMed  CAS  Google Scholar 

  • Inbar M (2008) Systematics of Pistacia: insights from specialist parasitic aphids. Taxon 57:238–242

    Google Scholar 

  • Inbar M, Kark S (2007) Gender-related developmental instability and herbivory of Pistacia atlantica across a steep environmental gradient. Folia Geobotanica 42:401–410

    Article  Google Scholar 

  • Inbar M, Wink M, Wool D (2004) The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Mol Phylog Evol 32:504–511

    Article  CAS  Google Scholar 

  • Johannesen J, Lubin Y, Laufs T, Seitz A (2005) Dispersal history of a spider (Stegodyphus lineatus) across contiguous deserts: vicariance and range expansion. Biol J Linn Soci 84:739–754

    Article  Google Scholar 

  • Jump AS, Penuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020

    Article  Google Scholar 

  • Kark S, Alkon PU, Safriel UN, Randi E (1999) Conservation priorities for chukar partridge in Israel based on genetic diversity across an ecological gradient. Conserv Biol 13:542–552

    Article  Google Scholar 

  • Loxdale HD (2010) Rapid genetic changes in natural insect populations. Ecological Entomology 35:155–164

    Article  Google Scholar 

  • Loxdale HD, Hardie J, Halbert S, Foottit R, Kidd NAC (1993) The relative importance of short-range and long-range movement of flying aphids. Biol Rev Camb Philos Soc 68:291–311

    Article  Google Scholar 

  • Miller M (1997) Tools for Population Genetic Analyses (TFPGA) 1.3: a Windows program for the analysis of allozyme and molecular population genetic data. Computer software distributed by the author via http://bioweb.usu.edu/mpmbio/index.htm

  • Mopper S, Stiling P, Landau K, Simberloff D, Van Zandt P (2000) Spatiotemporal variation in leafminer population structure and adaptation to individual oak trees. Ecology 81:1577–1587

    Google Scholar 

  • Nahum S, Inbar M, Ne’eman G, Ben-Shlomo R (2008) Phenotypic plasticity and gene diversity in Pistacia lentiscus L. along environmental gradients in Israel. Tree Genet Genom 4:777–785

    Article  Google Scholar 

  • Nahum S, Inbar M, Ne’eman G, Ben-Shlomo R (2010) Phylogeography and gene diversity of the gall-forming aphid Aploneura lentisci in the Mediterranean basin. Isr J Plant Sci 58:121–129

    Article  CAS  Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Nevo E (1998) Molecular evolution and ecological stress at global, regional and local scales: the Israeli perspective. J Exper Zool 282:95–119

    Article  CAS  Google Scholar 

  • Nevo E, Beiles A, Ben-Shlomo R (1984) The evolutionary significance of genetic diversity: ecological, demographic and life history correlates. In: Mani GS (ed) Evolutionary dynamics of genetic diversity. Lecture notes in biomathematics. Springer, Berlin, pp 13–213

    Google Scholar 

  • Oikonomou C, Flocas HA, Hatzaki M, Nisantzi A, Asimakopoulos DN (2009) Relationship of extreme dry spells in Eastern Mediterranean with large-scale circulation. Theor Appl Climatol 100:137–151

    Article  Google Scholar 

  • Orr MR, Smith TB (1998) Ecology and speciation. TREE 13:502–506

    PubMed  CAS  Google Scholar 

  • Parsons PA (2005) Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80:589–610

    Article  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peccoud J, Ollivie A, Plantegenest M, Simon J (2009) A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. PNAS 106:7495–7500

    Article  PubMed  CAS  Google Scholar 

  • Peleg Z, Saranga Y, Krugman T, Abbo S, Nevo E, Fahima T (2008) Allelic diversity associated with aridity gradient in wild emmer wheat populations. Plant Cell Environ 31:39–49

    PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Roderick GK (1996) Geographic structure insect populations: gene flow, phylogeography, and their uses. Ann Rev Entomol 41:325–352

    Article  CAS  Google Scholar 

  • Scheiner SM (1993) Genetic and evolution of phenotypic plasticity. Ann Rev Ecol Syst 24:35–68

    Article  Google Scholar 

  • Shrestha MK, Golan-Goldhirsh A, Ward D (2002) Population genetic structure and the conservation of isolated populations of Acacia raddiana in the Negev Desert. Biol Conserv 108:119–127

    Article  Google Scholar 

  • Smith MC (2005) Plant resistance to arthropods. Springer, Dordrecht

    Book  Google Scholar 

  • Swofford DL (2002) PAUP* 4.0. Sinauer Associates, Sunderland

    Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nuc Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Turpeinen T, Tenhola T, Manninen O, Nevo E, Issila E (2001) Microsatellite diversity associated with ecological factors in Hordeum spontaneum populations in Israel. Mol Ecol 10:1577–1591

    Article  PubMed  CAS  Google Scholar 

  • Volis S, Mendlinger S, Ward D (2002) Adaptive traits of wild barley plants of Mediterranean and desert origin. Oecologia 133:131–138

    Article  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Lee TVD, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M (1995) AFLP: a new technique for DNA fingerprinting. Nuc Acids Res 23:4407–4414

    Article  CAS  Google Scholar 

  • Werner NY, Mokady O (2004) Swimming out of Africa: mitochondrial DNA evidence for late Pliocene dispersal of a cichlid from Central Africa to the Levant. Biol J Linn Soc 82:103–109

    Article  Google Scholar 

  • Werner O, Sanchez-Gomez P, Carrion-Vilches M, Guerra J (2002) Evaluation of genetic diversity in Pistacia lentiscus L. (Anacardiaceae) from the southern Iberian Peninsula and North Africa using RAPD assay. Implications for reafforestation policy. Isr J Plant Sci 50:11–18

    Article  CAS  Google Scholar 

  • West-Eberhard M (1989) Phenotypic plasticity and the origins of diversity. Ann Revof Ecol Syst 20:249–278

    Article  Google Scholar 

  • Wool D (2004) Galling aphids: Specialization, biological complexity, and variation. Ann Rev Entomol 49:175–192

    Article  CAS  Google Scholar 

  • Wool D, Bogen R (1999) Ecology of the gall-forming aphid, Slavum wertheimae, on Pistacia atlantica: population dynamics and differential herbivory. Isr J Zool 45:247–260

    Google Scholar 

  • Yom-Tov Y, Tchernov E (1988) The Zoogeography of Israel. The distribution and abundance at a zoogeographical crossroad. W. Junk, Springer, New York

    Google Scholar 

  • Zohary M (1940) Forests and forest remnants of Pistacia atlantica Desf. in Palestine and Syria. Palestine J Bot 3:158–161

    Google Scholar 

  • Zohary M (1952) A monographic study of the genus Pistacia. Palestine J Bot Jerusalem Series 5:187–238

    Google Scholar 

  • Zohary D (1995) Taxonomy – The genus Pistacia L. In: Padulosi S, Caruso T, Barone E (eds) Taxonomy, distribution, conservation and uses of Pistacia genetic resources. International Plant Genetic Resources Institute, Palermo, pp 1–11

    Google Scholar 

Download references

Acknowledgments

We thank Dina Raats, Meital Amsterdam, Michal Marek, Tali Treibitz, Hava Avrani, and Jonathan Wexler for their help in sample collections. We would like to express our thanks to the anonymous referee, whose helpful suggestions contributed significantly to this study. This research was supported in part by a grant from the Israel Science Foundation (ISF No.940/08 to MI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Ben-Shlomo.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avrani, S., Ben-Shlomo, R. & Inbar, M. Genetic structure of a galling aphid Slavum wertheimae and its host tree Pistacia atlantica across an Irano-Turanian distribution: from fragmentation to speciation?. Tree Genetics & Genomes 8, 811–820 (2012). https://doi.org/10.1007/s11295-011-0466-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0466-3

Keywords

Navigation