Skip to main content
Log in

A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genomic resources have recently been developed for a number of species of Fagaceae, with the purpose of identifying the genetic factors underlying the adaptation of these long-lived, biologically predominant, commercially and ecologically important species to their environment. The sequencing of genomes of the size of the oak genome (740 Mb/C) is now becoming both possible and affordable due to breakthroughs in sequencing technology. However, an understanding of the composition and structure of the oak genome is required before launching a sequencing initiative. We constructed random (Rd) and hypomethylated (Hp) genomic libraries for pedunculate oak (Quercus robur) and carried out a sample sequencing of 2.33 and 2.36 Mb of shotgun DNA from the Rd and Hp libraries, respectively, to provide a first insight into the repetitive element and gene content of the oak genome. We found striking similarities between Rd sequences and previously analyzed BAC end sequences of pedunculate oak, with a similar percentage of known repeat elements (5.56%), an almost identical simple sequence repeat density (i.e., 29 SSRs per 100 kb), an identical profile of SSR motifs (in descending order of frequency—dinucleotide, pentanucleotide, trinucleotide, tetranucleotide, and hexanucleotide motifs). Conversely, the Hp fraction was, as expected, enriched in nuclear genes (2.44-fold enrichment). This enrichment was associated with a lower frequency of retrotransposons than for Rd sequences. We also identified twice as many SSR motifs in the Rd library as in the Hp library. This work provides useful information before opening a new chapter in oak genome sequencing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252:1651–1656

    Article  PubMed  CAS  Google Scholar 

  • Bairoch A, Boeckmann B, Ferro S, Gasteiger E, Swiss-Prot (2004) Juggling between evolution and stability. Brief Bioinformatics 5:39–55

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Schrick K, Springer PS, Brown WE, SanMiguel P (1994) Active maize genes are unmodified and flanked by diverse classes of modified, highly repetitive DNA. Genome 37:565–576

    Article  PubMed  CAS  Google Scholar 

  • Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 23(4):25

    Article  Google Scholar 

  • Durand J, Bodenes C, Chancerel E, Frigerio JM, Vendramin G, Sebastiani F, Buonamici A, Gailing O, Koelewijn HP, Villani F, Mattioni C, Cherubini M, Goicoechea PG, Herran A, Ikaran Z, Cabané C, Ueno S, Alberto F, Dumoulin PY, Guichoux E, de Daruvar A, Kremer A, Plomion C (2010) A fast and cost-effective approach to develop and map EST-SSR markers: oak as a case study. BMC Genomics 15(11):570

    Article  Google Scholar 

  • Emberton J, Ma J, Yuan Y, SanMiguel P, Bennetzen JL (2005) Gene enrichment in maize with hypomethylated partial restriction (HMPR) libraries. Genome Res 15:1441–1446

    Article  PubMed  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    PubMed  CAS  Google Scholar 

  • Faivre-rampant P, Lesur I, Boussardon C, Bitton F, Bodénès C, Le Provost G, Kremer A, Plomion C (2011) Analysis of BAC end sequences in a keystone forest tree species: oak, revealing insights into the composition of its genome. BMC Genomics 12:292

    Article  PubMed  Google Scholar 

  • Falgueras J, Lara AJ, Fernández-Pozo N, Cantón FR, Pérez-Trabado G, Claros MG (2010) SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. BMC Bioinformatics 11:38

    Article  PubMed  Google Scholar 

  • Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–222

    Article  PubMed  CAS  Google Scholar 

  • Florea L, Hartzell G, Zhang Z, Rubin GM, Miller W (1998) A computer program for aligning a cDNA sequence with a genomic DNA sequence. Genome Res 8:967–74

    PubMed  CAS  Google Scholar 

  • Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, Bork P, Das U, Daugherty L, Duquenne L, Finn RD, Gough J, Haft D, Hulo N, Kahn D, Kelly E, Laugraud A, Letunic I, Lonsdale D, Lopez R, Madera M, Maslen J, McAnulla C, McDowall J, Mistry J, Mitchell A, Mulder N, Natale D, Orengo C, Quinn AF, Selengut JD, Sigrist CJA, Thimma M, Thomas PD, Valentin F, Wilson D, Wu CH, Yeats C (2009) InterPro: the integrative protein signature database. Nucleic Acids Res 37:D211–215

    Article  PubMed  CAS  Google Scholar 

  • Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J (2005) Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 110:462–467

    Article  PubMed  CAS  Google Scholar 

  • Kolpakov R, Bana G, Kucherov G (2003) mreps: efficient and flexible detection of tandem repeats in DNA. Nucleic Acids Res 31:3672–3678

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48(6):1120–6

    Article  PubMed  CAS  Google Scholar 

  • Martienssen R (1998) Transposons, DNA methylation and gene control. Trends Genet 14:263–264

    Article  PubMed  CAS  Google Scholar 

  • Nelson W, Luo M, Ma J, Estep M, Estill J, He R, Talag J, Sisneros N, Kudrna D, Kim H, Ammiraju JS, Collura K, Bharti AK, Messing J, Wing RA, SanMiguel P, Bennetzen JL, Soderlund C (2008) Methylation-sensitive linking libraries enhance gene-enriched sequencing of complex genomes and map DNA methylation domains. BMC Genomics 19(9):621

    Article  Google Scholar 

  • Palmer LE, Rabinowicz PD, O’Shaughnessy AL, Balija VS, Nascimento LU, Dike S, de la Bastide M, Martienssen RA, McCombie WR (2003) Maize genome sequencing by methylation filtration. Science 302:2115–2117

    Article  PubMed  Google Scholar 

  • Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet 23(3):305–8

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Palmer LE, May BP, Hemann MT, Lowe SW, McCombie WR, Martienssen RA (2003) Genes and transposons are differentially methylated in plants, but not in mammals. Genome Res 13:2658–2664

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O’Shaughnessy AL, Nascimento LU, McCombie WR, Martienssen RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Tarailo-Graovac M, Chen N (2009) Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics Chapter 4: Unit 4.10

  • Ueno S, Le Provost G, Léger V, Klopp C, Noirot C, Frigerio J, Salin F, Salse J, Abrouk M, Murat F, Brendel O, Derory J, Abadie P, Léger P, Cabane C, Barré A, de Daruvar A, Couloux A, Wincker P, Reviron M, Kremer A, Plomion C (2010) Bioinformatic analysis of Sanger and 454 ESTs for a keystone forest tree species: oak. BMC Genomics 23(11):650

    Article  Google Scholar 

  • Whitelaw CA, Barbazuk WB, Pertea G, Chan AP, Cheung F, Lee Y, Zheng L, van Heeringen S, Karamycheva S, Bennetzen JL, SanMiguel P, Lakey N, Bedell J, Yuan Y, Budiman MA, Resnick A, Van Aken S, Utterback T, Riedmuller S, Williams M, Feldblyum T, Schubert K, Beachy R, Fraser CM, Quackenbush J (2003) Enrichment of gene-coding sequences in maize by genome filtration. Science 302:2118–2120

    Article  PubMed  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2002) Methylation-spanning linker libraries link gene-rich regions and identify epigenetic boundaries in Zea mays. Genome Res 12(9):1345–9

    Article  PubMed  CAS  Google Scholar 

  • Yuan Y, SanMiguel PJ, Bennetzen JL (2003) High-Cot sequence analysis of the maize genome. Plant J 34(2):249–255, Erratum in: Plant J 36(3):430

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Zhao X, Ding X, Paterson AH, Wing RA (1995) Preparation of megabase-size DNA from plant nuclei. Plant J 7:175–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by INRA and the European Union: a postdoctoral fellowship awarded to I. Lesur (FORESTTRAC project, no. FP7-244096) and a PhD fellowship awarded to J. Durand (EVOLTREE project, no. 16322).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Plomion.

Additional information

Communicated by D. Grattapaglia

Electronic supplementary material

Below is the link to the electronic supplementary material.

S1

S1_SSR_hypo_random.txt—Hypomethylated and random genomic sequences containing at least one SSR (text file) (TXT 82 kb)

S2

S2_nuclear_SWI_hit_hypo_random.txt—Hypomethylated and random genomic sequences potentially coding for a nuclear gene (text file) (TXT 93 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesur, I., Durand, J., Sebastiani, F. et al. A sample view of the pedunculate oak (Quercus robur) genome from the sequencing of hypomethylated and random genomic libraries. Tree Genetics & Genomes 7, 1277–1285 (2011). https://doi.org/10.1007/s11295-011-0412-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0412-4

Keywords

Navigation