Skip to main content

Advertisement

Log in

Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliata [L.] Raf), a potential model genotype for functional genomics studies in Citrus

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Precocious trifoliate orange (Poncirus trifoliata [L.] Raf), an extremely early flowering mutant of P. trifoliata, is an attractive model for functional genomics research in Citrus. A procedure for efficient regeneration and transformation of this genotype was developed by using green fluorescent protein (GFP) gene as visual marker and etiolated stem segments as explants. In vivo monitoring of GFP expression permitted a rapid and easy discrimination of transgenic shoots and escapes. Transformation efficiency was 20.7% and the transformants were identified by polymerase chain reaction (PCR) and Southern blot analysis. Moreover, the transgenic lines expressed variable amounts of the GFP gene as revealed by real-time PCR analysis. Fifteen transgenic plants flowered 18 months after transfer to the greenhouse and six of them set fruits. GFP expression was also observed in the transgenic flowers and fruits. To test the utility of this system for functional genomics studies, an Arabidopsis thaliana MAC12.2 gene with the potential to produce seedless fruits was introduced into this genotype, and the traits of the transgenic fruits were characterized. The successful transformation of this perennial woody genotype with extremely short juvenility will allow us to test the function of cloned genes in citrus, the improvement of which is hindered by a long juvenility period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AS:

acetosyringone

BA:

6-benzyladenine

GA3 :

gibberellic acid

GFP:

green fluorescent protein

IBA:

indole butyric acid

KT:

kinetin

MT medium:

Murashige and Tucker (1969)

NAA:

α-napthaleneacetic acid

NPT II:

neomycin phosphotransferase II

References

  • Almeida WAB, Filho FAAM, Mendes BMJ, Pavan A, Rodriguez APM (2003) Agrobacterium-mediated transformation of Citrus sinensis and Citrus limonia epicotyl segments. Sci Agric 60(1):23–29

    Article  Google Scholar 

  • Ananthakrishnan G, Orbovic V, Pasquali G, Grosser JW (2007) Transfer of CTV-derived resistance candidate sequences to four grapefruit cultivars through Agrobacterium-mediated genetic transformation. In Vitro Cell Dev Biol Plant 43:593–601

    Article  CAS  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Filho FAAM, Mourao FAA, Mendes BMJ (2003) The use of the PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L. Osbeck). Plant Cell Rep 22:122–128

    Article  PubMed  CAS  Google Scholar 

  • Cervera M, Juarez J, Navarro A, Pina JA, Duran-Vila N, Dominguez A, Navarro L, Peña L (1998) Genetic transformation and regeneration of mature tissues woody fruit plants bypassing the juvenile stage. Transgenic Res 7:51–59

    Article  CAS  Google Scholar 

  • Cervera M, Ortega C, Navarro A, Navarro M, Peña L (2000) Generation of transgenic citrus plants with tolerance-to-salinity gene HAL2 from yeast. J Hortic Sci Biotechnol 75(1):26–30

    CAS  Google Scholar 

  • Cervera M, Juarez J, Navarro L, Peña L (2005) Genetic transformation of mature citrus plants. In: Peña L (ed) Transgenic plants, methods and protocols. Humana, Totowa, NJ, pp 177–188

    Google Scholar 

  • Cervera M, Navarro A, Navarro L, Peña L (2008) Production of transgenic adult plants from clementine mandarin by enhancing cell competence for transformation and regeneration. Tree Physiol 28:55–66

    PubMed  CAS  Google Scholar 

  • Cheng YJ, Guo WW, Yi HL, Pang XM, Deng XX (2003) An efficient protocol for genomic DNA extraction from Citrus species. Plant Mol Biol Rep 21:177–178

    Article  Google Scholar 

  • Costa MGC, Otoni WC, Moore GA (2002) An evaluation of factors affecting the efficiency of Agrobacterium-mediated transformation of Citrus paradisi (Macf.) and production of transgenic plants containing carotenoid biosynthetic genes. Plant Cell Rep 21:365–373

    Article  CAS  Google Scholar 

  • Deng XX (2005) Advances in worldwide citrus breeding. Acta Horticulturae Sinica 32(6):1140–1146 in Chinese with English abstract

    Google Scholar 

  • Deng XX, Duan YX (2006) Modification of perennial fruit trees. In: Fladung M, Ewald D (eds) Tree transgenesis: recent developments. Springer, Berlin, pp 48–66

    Google Scholar 

  • Dominguez A, Cervera M, Perez RM, Romero J, Fagoaga C, Cubero J, Lopez MM, Juarez JA, Navarro L, Peña L (2004) Characterisation of regenerants obtained under selective conditions after Agrobacterium-mediated transformation of citrus explants reveals production of silenced and chimeric plants at unexpected high frequencies. Mol Breed 14:171–183

    Article  CAS  Google Scholar 

  • Duan YX, Guo WW, Meng HJ, Tao NG, Li DD, Deng XX (2007a) High efficient transgenic plant regeneration from embryogenic calluses of Citrus sinensis. Biol Plant 51(2):212–216

    Article  CAS  Google Scholar 

  • Duan YX, Liu X, Fan J, Li DL, Wu RC, Guo WW (2007b) Multiple shoot induction from seedling epicotyls and transgenic citrus plant regeneration containing the green fluorescent protein gene. Botanical Studies 48:165–171

    Google Scholar 

  • Endo T, Shimada T, Fujii H, Kobayashi Y, Araki T, Omura M (2005) Ectopic expression of an FT homolog from Citrus confers an early flowering phenotype on trifoliate orange (Poncirus trifoliata L. Raf.). Transgenic Res 14:703–712

    Article  PubMed  CAS  Google Scholar 

  • Fagoaga C, Tadeo FR, Iglesias DJ, Huerta L, Lliso I, Vidal AM, Talon M, Navarro L, Garcia-Martinez JL, Peña L (2007) Engineering of gibberellin levels in citrus by sense and antisense overexpression of a GA 20-oxidase gene modifies plant architecture. J Exp Bot 58(6):1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Gentile A, Deng ZN, Malfa SL, Domina F, Germana C, Tribulato E (2004) Morphological and physiological effects of rolABC genes into Citrus genome. Acta Hortic 632:235–242

    CAS  Google Scholar 

  • Ghorbel R, Juarez J, Navarro L, Peña L (1999) Green fluorescent protein as a screenable marker to increase the efficiency of generating transgenic woody fruit plants. Theor Appl Genet 99:350–358

    Article  Google Scholar 

  • Ghorbel R, Dominguez A, Navarro L, Peña L (2000) High efficiency genetic transformation of sour orange (Citrus aurantium L.) and production of transgenic trees containing the coat protein gene of citrus tristeza virus. Tree Physiol 20:1183–1189

    PubMed  Google Scholar 

  • Gonzalez-Ramos J, Graham J, Mirkov TE (2005) Transformation of citrus cultivars with genes encoding potential resistance to citrus canker (Xanthomonas axonopodis pv citri). Phytopathology 95(6):S35

    Google Scholar 

  • Grosser JW, Gmitter FG Jr, Fleming GH, Chandler JL (2000) Applications of biotechnology to citrus cultivar improvement at the Citrus Research and Education Center. Acta Hortic 535:213–220

    Google Scholar 

  • Guo WW, Duan YX, Olivares-Fuster O, Wu RCZC, Arias CR, Burns JK, Grosser JW (2005) Protoplast transformation and regeneration of transgenic Valencia sweet orange plants containing a juice quality-related pectin methylesterase gene. Plant Cell Rep 24(8):482–486

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez-E MA, Luth D, Moore GA (1997) Factors affecting Agrobacterium-mediated transformation in Citrus and production of sour orange (Citrus aurantium L.) plants expressing the coat protein gene of citrus tristeza virus. Plant Cell Rep 16:745–753

    Article  Google Scholar 

  • Haseloff J, Siemering KR, Prasher DC, Hodge S (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci U S A 94:2122–2127

    Article  PubMed  CAS  Google Scholar 

  • Iwanami T, Shimizu T, Ito T, Hirabayashi T (2004) Tolerance to citrus mosaic virus in transgenic trifoliate orange lines harboring capsid polyprotein gene. Plant Dis 88(8):865–868

    Article  CAS  Google Scholar 

  • Kaneyoshi J, Kobayashi S, Nakamura Y, Shigemoto N, Doi Y (1994) A simple and efficient gene transfer system of trifoliate orange (Poncirus trifoliata Raf.). Plant Cell Rep 13:541–545

    CAS  Google Scholar 

  • Koltunow AM, Brennan P, Bond JE, Barker SJ (1998) Evaluation of genes to reduce seed size in Arabidopsis and tobacco and their application to Citrus. Mol Breed 4:235–251

    Article  CAS  Google Scholar 

  • Koltunow AM, Brennan P, Protopsaltis S (2000) Regeneration of West Indian limes (Citrus aurantifolia) containing genes for decreased seed set. Acta Hortic 535:81–91

    CAS  Google Scholar 

  • Li DD, Shi W, Deng XX (2002) Agrobacterium-mediated transformation of embryogenic calluses of Ponkan mandarin and the regeneration of plants containing the chimeric ribonuclease gene. Plant Cell Rep 21:153–156

    Article  CAS  Google Scholar 

  • Liang SQ, Wang XZ, Wan TX (1999) Study on biological characteristic and experiment of rootstock of precocious trifoliate orange. Zhejiang Citrus 16(3):2–4 in Chinese

    Google Scholar 

  • Liu Q, Xu J, Liu YZ, Zhao XL, Deng XX, Guo LL, Gu JQ (2007) A novel bud mutation that confers abnormal patterns of lycopene accumulation in sweet orange fruit (Citrus sinensis L. Osbeck). J Exp Bot 58:4161–4171

    Article  PubMed  CAS  Google Scholar 

  • Moreira-Dias JM, Molina RV, Bordon Y, Guardiola JL, Garcia-Luis A (2000) Direct and indirect shoot organogenic pathways in epicotyl cuttings of Troyer citrange differ in honmone requirements and in their response to light. Ann Bot 85:103–110

    Article  CAS  Google Scholar 

  • Murashige T, Tucker DPH (1969) Growth factor requirements of citrus tissue culture. Proc First Int Citrus Symp 3:1155–1161

    CAS  Google Scholar 

  • Omar AA, Grosser JW (2008) Comparison of endoplasmic reticulum targeted and non-targeted cytoplasmic GFP as a selectable marker in citrus protoplast transformation. Plant Sci 174:131–139

    Article  CAS  Google Scholar 

  • Omar AA, Song WY, Grosser JW (2007) Introduction of Xa21, a Xanthomonas-resistance gene from rice, into ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osbeck] using protoplast-GFP co-transformation or single plasmid transformation. J Hortic Sci Biotechnol 6:914–923

    Google Scholar 

  • Payne T, Johnson SD, Koltunow AM (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749

    Article  PubMed  CAS  Google Scholar 

  • Peña L, Cervera M, Juarez J, Ortega C, Pina JA, Duran-Vila N, Navarro L (1995) High efficiency Agrobacterium-mediated transformation and regeneration of citrus. Plant Sci 104:183–191

    Article  Google Scholar 

  • Peña L, Martin-Trillo M, Juarez J, Pina JA, Navarro L, Martinez-Zapater JM (2001) Constitutive expression of Arabidopsis LEAFY or APETALA1 genes in citrus reduces their generation time. Nat Biotechnol 19:263–267

    Article  PubMed  Google Scholar 

  • Peña L, Cervera M, Ghorbel R, Dominguez A, Fagoaga C, Juarez J, Pina JA, Navarro L (2003) Transgenic citrus. In: Jaiwal PK, Singh RP (eds) Plant genetic engineering, vol. 3: improvement of commercial plants. SciTech, Houston, TX, pp 261–282

    Google Scholar 

  • Peña L, Perez RM, Cervera M, Juarez JA, Navarro L (2004) Early events in Agrobacterium-mediated genetic transformation of citrus explants. Ann Bot 94:67–74

    Article  PubMed  Google Scholar 

  • Petri C, Webb K, Hily JM, Dardick C, Scorza R (2008) High transformation efficiency in plum (Prunus domestica L.): a new tool for functional genomics studies in Prunus spp. Mol Breed 22:581–591

    Article  CAS  Google Scholar 

  • Wong WS, Li GG, Ning W, Xu ZF, Wendy Hsiao WL, Zhang LY, Li N (2001) Repression of chilling-induced ACC accumulation in transgenic citrus by over-production of antisense l-aminocyclopropane-l-carboxylate synthase RNA. Plant Sci 161:969–977

    Article  CAS  Google Scholar 

  • Yang L, Xu CJ, Hu GB, Chen KS (2007) Establishment of an Agrobacterium-mediated transformation system for Fortunella crassifolia. Biol Plantarum 51(3):541–545

    Article  CAS  Google Scholar 

  • Yu CH, Huang S, Chen C, Deng Z, Ling P, Gmitter FG Jr (2002) Factors affecting Agrobacterium-mediated transformation and regeneration of sweet orange and citrange. Plant Cell Tissue Organ Cult 71:147–155

    Article  CAS  Google Scholar 

  • Zanek MC, Reyes CA, Cervera M, Peña EJ, Velazquez K, Costa N, Plata MI, Grau O, Peña L, Garcia ML (2008) Genetic transformation of sweet orange with the coat protein gene of Citrus psorosis virus and evaluation of resistance against the virus. Plant Cell Rep 27:57–66

    Article  PubMed  CAS  Google Scholar 

  • Zheng QF, Chen CX, Huang S, Choi YA, Gmitter FG Jr (2006) The green fluorescent protein (GFP) is a vital visual marker in citrus transgene research. Electron J Biol 2(1):1–5

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China, the National 863 Project (2006AA100108, 2007AA10Z182), and the Key Project of Hubei Provincial Natural Science Foundation (no. 2008CDA069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Wu Guo.

Additional information

Communicated by F. Gmitter

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, B., Li, DL., Xu, SX. et al. Highly efficient transformation of the GFP and MAC12.2 genes into precocious trifoliate orange (Poncirus trifoliata [L.] Raf), a potential model genotype for functional genomics studies in Citrus . Tree Genetics & Genomes 5, 529–537 (2009). https://doi.org/10.1007/s11295-009-0206-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0206-0

Keywords

Navigation