Skip to main content

Advertisement

Log in

Identification of differentially expressed genes in the flesh of blood and common oranges

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The objective of this research was the identification of genes differentially expressed in blood oranges compared to common oranges and the identification of anthocyanin pathway genes that are up-regulated in flesh of blood oranges. A subtracted complementary DNA library of 1,248 clones was constructed using RNA from the flesh of a nucellar line (58-8D-1) of Moro (a blood orange) as tester and from Cadenera (a common orange) as driver. After screening by reverse Northern, a total of 230 clones were found to be up-regulated in blood orange, while 30 were up-regulated in the common blond one. Sequence analysis identified genes involved in the anthocyanin pathway including genes encoding biosynthetic enzymes like phenylalanine ammonialyase, chalcone synthase, dihydroflavonol-4-reductase, anthocyanidin synthase, UDP:glucose flavonoid 3-O-glucosyltransferase, glutathione S-transferase, and a regulatory gene encoding a basic Helix-Loop-Helix protein, while others were related to primary metabolism, flavor biosynthesis, signal transduction mechanisms, and defense. Some sequences were classified as unknown and unnamed and some others were unclassified. Semiquantitative reverse transcription-polymerase chain reaction (PCR) and quantitative real-time PCR were used to confirm the differential expression patterns of selected candidate genes of different functional classes. Correlations between the expression of some genes and the processes involved in the ripening of blood oranges were identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aharoni A, Keizer LCP, Bouwmeester HJ, Sun Z, Alvarez-Huerta M, Verhoeven HA, Blaas J, van Houwelingen AM, De Vos RC, van der Voet H et al (2000) Identification of the SAAT gene involved in strawberry flavor biogenesis by use of DNA microarrays. Plant Cell 12:647–662

    Article  CAS  PubMed  Google Scholar 

  • Alfenito MR, Souer E, Goodman CD, Buell R, Mol J, Koes R, Walbot V (1998) Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant Cell 10:1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  Google Scholar 

  • Antonelli A, Fabbri C, Giorgioni ME, Bazzocchi R (1997) Characterization of 24 old garden roses from their volatile compositions. J Agric Food Chem 45:4435–4439

    Article  CAS  Google Scholar 

  • Bayrak A (1994) Volatile oil composition of Turkish rose (Rosa damascene). J Sci Food Agric 64:441–448

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2002) Biochemistry and Molecular Biology of Plant. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Burr FA, Burr B, Scheffler BE, Blewitt M, Wienand U, Matza EC (1996) The Maize Repressor-like Gene intensifierl Shares Homology with the rVb7 Multigene Family of Transcription Factors and Exhibits Missplicing. Plant Cell 8:1249–1259

    Article  CAS  PubMed  Google Scholar 

  • Castillejo C, de la Fuente JI, Iannetta P, Botella MA, Valpuesta V (2004) Pectin esterase gene family in strawberry fruit: study of FaPE1, a ripening-specific isoform. J Exp Bot 55(398):909–918

    Article  CAS  PubMed  Google Scholar 

  • Cotroneo PS, Russo MP, Ciuni M, Lo Piero AR, Reforgiato Recupero G (2006) Real time RT-PCR profiling of some of the anthocyanin biosynthetic genes during blood and common orange [Citrus sinensis (L.) Osbeck] fruit ripening). JASHS J Amer Soc Hort Sci 131(4):537–543

    CAS  Google Scholar 

  • De Vetten N, Ter Horst J, van Schaik H-P, De Boer A, Mol J, Koes R (1999) A cytochrome b 5 is required for full activity of flavonoid 3′,5′-hydroxylase, a cytochrome P450 involved in the formation of blue flower colors. Proc Natl Acad Sci USA 96:778–783

    Article  PubMed  Google Scholar 

  • Ding M, Feng R, Wang SY, Bowman L, Lu Y, Qian Y, Castranova V, Jiang BH, Shi X (2006) Cyanidin-3-glucoside, a natural product derivied from blackberry, exhibits chemopreventive and chemotherapeutic activity. J Biol Chem 281(25):17359–17368

    Article  CAS  PubMed  Google Scholar 

  • Droog FNJ, Hooykaas PJJ, Van der Zaal BJ (1995) 2,4-Dichlorophenoxyacetic acid and related chlorinated compounds inhibit two auxin-regulated type III tobacco glutathione S-transferases. Plant Physiol 107:1139–1146

    CAS  PubMed  Google Scholar 

  • Fauconneau B, Waffo-Teguo P, Huguet F, Barrier L, Decendit A, Merillon JM (1997) Comparative study of radical scavenger and antioxidant properties of phenolic compounds from Vitis vinifera cell cultures using in vitro tests. Life Sci 61:2103–2110

    Article  CAS  PubMed  Google Scholar 

  • Fischer RL, Bennet AB (1991) Role of cell wall hydrolases in fruit ripening. Annu Rev Plant Physiol Plant Mol Biol 42:675–703

    Article  CAS  Google Scholar 

  • Fujiwara H, Tanaka Y, Yonekura-Sakakibara K, Fukuchi-Mizutani M, Nakao M, Fukui Y, Yamaguchi M-A, Ashikari T, Kusumi T (1999) cDNA cloning, gene expression, and subcellular localization of anthocyanin 5-aromatic acyltransferase from Gentiana triflora. Plant J 16:421–431

    Article  Google Scholar 

  • Gu YQ, Wildermuth MC, Chakravarthy S, Loh YT, Yang C, He X, Han Y, Martin GB (2002) Tomato transcription factors pti4, pti5, and pti6 activate defense responses when expressed in Arabidopsis. Plant Cell 14:817–831

    Article  CAS  PubMed  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic Helix-Loop-Helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20(5):735–747

    Article  CAS  PubMed  Google Scholar 

  • Holton TA, Cornish EC (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955–962

    Article  CAS  Google Scholar 

  • Jia Y, Rothermel B, Thornton J, Butow RA (1997) A basic Helix-Loop-Helix-leucine zipper transcription complex in yeast functions in a signaling pathway from mitochondria to the nucleus. Mol Cell Biol 1110–1117

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  CAS  PubMed  Google Scholar 

  • Lalusin AG, Nishita K, Kim S-H, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Gen Genomics 275:44–54

    Article  CAS  Google Scholar 

  • Lancaster JE (1992) Regulation of skin color in apples. Crit Rev Plant Sci 10:487–502

    Article  CAS  Google Scholar 

  • Larsen ES, Alfenito MR, Briggs WR, Walbot V (2003) A carnation anthocyanins mutant is complemented by glutathione S-transferase encoded by maize Bz2 and Petunia An9. Plant Cell Rep 21:900–904

    CAS  PubMed  Google Scholar 

  • Lo Piero AR, Consoli A, Puglisi I, Orestano G, Reforgiato Recupero G, Petrone G (2005) Anthocyaninless cultivars of sweet orange lack to express the UDP-glucose flavonoid 3-O-glucosyl transferase. J Plant Biochem Biotechnol 14:1–6

    Google Scholar 

  • Lo Piero AR, Puglisi I, Petrone G (2006) Gene characterization, analyis of expression and in vitro synthesis of dihydroflavonol 4-reductase from [Citrus sinensis (L.) Osbeck]. Phytochemistry 67(7):684–695

    Article  PubMed  CAS  Google Scholar 

  • Marrs KA, Walbot V (1997) Expression and RNA splicing of the maize glutathione S-transferase Bronze2 gene 1s regulated—by cadmium and other stresses. Plant Physiol 113:93–102

    Article  CAS  PubMed  Google Scholar 

  • Marrs KA, Alfenito MR, Lloyd AM, Walbot V (1995) A glutathione s transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375:397–400

    Article  CAS  PubMed  Google Scholar 

  • Mazza G, Miniati E (1993) Anthocyanins in fruits, vegetables and grains. CRC Press Inc, Boca Raton

    Google Scholar 

  • Murre C, Bain G, van Dijk MA, Engle I, Furnari BA, Massari ME, Matthews JR, Quong MW, Rivera RR, Stuiver MH (1994) Structure and function of helix-loop-helix proteins. Biochim Biophys Acta 1218:129–135

    CAS  PubMed  Google Scholar 

  • Nesi N, Debeaujon I, Jond C, Stewart AJ, Jenkins GI, Caboche M, Lepiniec L (2002) The TRANSPARENT TESTA 16 locus encodes the Arabidopsis Bsister MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463–2479

    Article  CAS  PubMed  Google Scholar 

  • Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195

    Article  CAS  PubMed  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DE, Boelens PG, van Norren K, van Leeuwen PA (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    CAS  PubMed  Google Scholar 

  • Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF (1995) Molecular evolution of flower development diversification of the plant MADS-box regulatory gene family. Genetics 140:345–356

    CAS  PubMed  Google Scholar 

  • Rao BRR, Sastry KP, Saleem SM, Rao EVSP, Syamasundar KV, Ramesh S (2000) Volatile flower oils of three genotypes of rose-scented geranium (Pelargonium sp.). Flavour Fragr J 15:105–107

    Article  CAS  Google Scholar 

  • Rapisarda P, Fallico B, Izzo R, Maccarone E (1994) A simple and reliable method for determining anthocyanins in blood orange juices. Agrochimica 38:157–164

    CAS  Google Scholar 

  • Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. vol. I, 3rd edn. Cold Spring Harbor Laboratory, Plainview, NY

    Google Scholar 

  • Shore P, Sharrocks AD (1995) The MADS-box family of transcription factors. Eur J Biochem 229:1–13

    Article  CAS  PubMed  Google Scholar 

  • Sparvoli F, Martin C, Scienza A, Gavazzi G, Tonelli C (1994) Cloning and molecular analysis of structural genes involved in flavonoid and stilbene biosynthesis grape (Vitis vinifera L.). Plant Mol Biol 24:743–755

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Nakao M, Tanaka Y, Yamaguchi M-A, Kusumi T, Nishino T (2001) Malonyl-CoA:anthocyanin 5-O-glucoside-6-O-malonyltransferasae from scarlet sage (Salvia splendens) flowers. J Biol Chem 276:49013–49019

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nakayama T, Yonekura-Sakakibara K, Fukui Y, Nakamura N, Yamaguchi M-A, Tanaka Y, Kusumi T, Nishino T (2002) cDNA cloning, heterologous expressions, and functional characterization of malonyl-coenzymeA: anthocyanidin 3-O-glucoside-6’-O-malonyltransferase from dahlia flowers. Plant Physiol 130:2142–2151

    Article  CAS  PubMed  Google Scholar 

  • Suzuki H, Nakayama T, Yamaguchi M-A, Nishino T (2004) cDNA cloning and characterization of two Dendranthema x morifolium anthocyanin maloniltransferases with different functional activities. Plant Sci 166:89–96

    Article  CAS  Google Scholar 

  • Theiben G, Strater T, Fisher A, Saedler H (1995) Structural characterization of chromosomal location and Phylogenetic evaluation of two pairs of AGAMOUS-like MADS-box genes from maize. Gene 156:155–166

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

    Article  CAS  PubMed  Google Scholar 

  • Ueda Y, Fujishita N, Chachin K (1997) Presence of alcohol acetyltsferase in melons (Cucumis melo L.). Postharvest Biol Technol 10:121–126

    Article  CAS  Google Scholar 

  • Winkel-Shirley B (2001) Flavonoid biosynthesis. A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126:485–493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We acknowledge Cathie Martin for her critical review of this manuscript and suggestions. This work was supported by EU funds provided through the Science and Technology Park of Sicily (Pon no. 12839 Italian Ministry of University and Research) and by Agronanotech (Italian Ministry of Agriculture) projects for founding PhD thesis of Concetta Licciardello.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reforgiato Giuseppe Recupero.

Additional information

Communicated by M. Morgante

Rights and permissions

Reprints and permissions

About this article

Cite this article

Licciardello, C., Russo, M.P., Vale’, G. et al. Identification of differentially expressed genes in the flesh of blood and common oranges. Tree Genetics & Genomes 4, 315–331 (2008). https://doi.org/10.1007/s11295-007-0111-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-007-0111-3

Keywords

Navigation