Skip to main content
Log in

Ecological and population genetics research imperatives for transgenic trees

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Applied research that supplies requisite, albeit incomplete, scientific knowledge is necessary if we are to address the legal, regulatory, and social/ethical issues regarding the use of transgenic trees. The technology for creating these trees has gotten far ahead of research on the ecological and population genetics impacts that may emerge. In this paper, we propose a comprehensive, interdisciplinary scientific approach that combines experimental results with model projections. We believe that much of this work must be completed before social issues can be clarified and resolved. Broad-based failure by those in the forestry-minded scientific community to carry out this interdisciplinary research could lead either to the establishment of transgenic trees with unintended consequences, or to an inability to realize the numerous advantages that this technology may offer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Transgenes are generally hemizygous and, therefore, usually segregate at a 1:1 ratio when outcrossing with non-transgenic trees. Therefore, migration rates of a particular transgene are ∼50% of the immigration rate for all trees with a parent in the transgenic stand (Ellstrand 2003). However, some researchers, e.g., Snow et al. (1999), have reported that not all transgenic lines segregate at that 1:1 ratio. This could be the result of multiple inserts. Thus situation-specific studies may be needed.

References

  • Bacles CFE, Lowe AJ, Ennos RA (2006) Effective seed dispersal across a fragmented landscape. Science 311:628

    Article  PubMed  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    Article  PubMed  CAS  Google Scholar 

  • Bradshaw HD, Stettler RF (1993) Molecular genetics of growth and development in Populus. I. Triploidy in hybrid poplars. Theor Appl Genet 86:301–307

    Article  Google Scholar 

  • Bramlett DL, Burris LC (1995) Top working young scions into reproductive mature loblolly pine. In: Hatcher A, Weir B (eds) Proceedings of the 23rd southern forest tree improvement conference, Asheville, NC, pp 234–241

  • Broer I, Walter S, Kerbach S, Köhne S, Neumann K (2003) Heat-induced transgene silencing is conveyed by signal transfer. In: Plant Biotechnology 2002 and beyond. Proceedings of the 10th IAPTC&B Congress, Orlando, FL, USA, 23–28 June 2002. Kluwer, Dordrecht, The Netherlands, pp 239–241

  • Brunner AM, Li J, DiFazio SP, Shevchenko O, Montgomery BE, Mohamed M, Wei H, Ma C, Elias A, Van Wormer K, Strauss SH (2007) Genetic containment of forest plantations. Tree Genetics and Genomes (this volume)

  • Bullock JM (1999) Using population matrix models to target GMO risk assessment. Asp Appl Biol 53:205–212

    Google Scholar 

  • Burdon RD (1994) The role of biotechnology in forest tree breeding. For Gen Resour 22:2–5

    Google Scholar 

  • Burke JM, Rieseberg LH (2003) Fitness effects of transgenic disease resistance in sunflowers. Science 300:1250

    Article  PubMed  CAS  Google Scholar 

  • Burley J (2001) Genetics in sustainable forestry: the challenges for forest genetics and tree breeding in the new millennium. Can J For Res 31:561–565

    Article  CAS  Google Scholar 

  • Carraway DT, Merkle SA (1997) Plantlet regeneration from somatic embryos of American chestnut. Can J For Res 27:1805–1812

    Article  Google Scholar 

  • Casimiro I, Beeckman T, Graham N, Bhalerao R, Zhang H, Casero P, Sandberg G, Bennett MJ (2003) Dissecting Arabidopsis lateral root development. Trends Plant Sci 8:165–171

    Article  PubMed  CAS  Google Scholar 

  • Chalmers AF (1976) What is this thing called science? University of Queensland, Australia

    Google Scholar 

  • Cubbage FW, Wear DN, Bennadji Z (2006) Economic prospects and policy framework of forest biotechnology in the southern U.S.A. and South America. In: Williams CG (ed) Landscapes, genomics and transgenic conifers. Springer, Berlin, Heidelberg, New York, pp 191–207

    Chapter  Google Scholar 

  • DiFazio SP (2002) Measuring and modeling gene flow from hybrid poplar plantations: implications for transgenic risk assessment. Ph.D. Thesis, Oregon State University, Corvallis http://www.esd.ornl.gov/PGG/difaz_thesis.pdf

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leucaena leucocephala. Water Res 37:441–449

    Article  PubMed  CAS  Google Scholar 

  • Dunning JB Jr, Stewart DJ, Danielson BJ, Noon BR, Root TL, Lamberson RH, Stevens EE (1995) Spatially explicit population models: current forms and future uses. Ecol Appl 51(1):3–11

    Article  Google Scholar 

  • Eis S, Garman EH, Ebell LF (1965) Relation between cone production and diameter increment of Douglas fir [Pseudotsuga menziesii (Mirb.) Franco], Grand fir [Abies grandis (Dougl.) Lindl.], and western white pine [Pinus monticola (Dougl.)]. Can J Bot 43:1553–1559

    Article  Google Scholar 

  • Ellstrand N (2002) Gene flow from transgenic crops to wild relatives: what have we learned, what do we know, what do we need to know? In: Scientific methods workshop: ecological and agronomic consequences of gene flow from transgenic crops to wild relatives. Meeting proceedings. The Ohio State University, Columbus, pp 39–46, http://www.biosci.ohio-state.edu/~asnowlab/Proceedings.pdf

  • Ellstrand NC (2003) Dangerous liaisons? When cultivated plants mate with their wild relatives. The Johns Hopkins University Press, Baltimore London

    Google Scholar 

  • EPA (2002) Bacillus thuringiensis Cry2Ab2 protein and the genetic material necessary for its production in cotton (006487) Fact sheet. Pesticide Regulatory Services, US Environmental Protection Agency. http://www.epa.gov/pesticides/biopesticides/ingredients/factsheets/factsheet_006487.htm

  • Ermel FF, Vizoso S, Charpentier JP, Jay-Allemand C, Catesson AM, Couee I (2000) Mechanisms of primordium formation during adventitious root development from walnut cotyledon explants. Planta 211:563–574

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics. Pearson Prentice Hall, Harlow London, New York

    Google Scholar 

  • Fu X, Harberd NP (2003) Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  • Global Justice Ecology Project (2004) Anti-GMO trees press conference. Global Justice Ecology Project 15-4031-5151 http://www.globaljusticeecology.org/index.php?name=news&ID=293&table=_archive, accessed May 19, 2006

  • Goldfarb B, Lian Z, Lanz-Garcia C, Whetten R (2003) Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda L.). Tree Physiol 23:1181–1192

    PubMed  CAS  Google Scholar 

  • Hails RS, Morley K (2005) Genes invading new populations: a risk assessment perspective. Sci Dir 20(5):245–252

    Google Scholar 

  • Haygood R, Ives AR, Andow DA (2003) Consequences of recurrent gene flow from crops to wild relatives. Proc R Soc Lond 270:1879–1886

    Article  Google Scholar 

  • Hempel CG (1966) Philosophy of natural science. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • Hinchee M (2005) The benefit of the applications of forest biotechnology. IUFRO Tree Biotechnology, http://iufro.up.ac.za/

  • Hoenicka H, Fladung M (2006) Biosafety in Populus spp. and other forest trees: from non-native species to taxa derived from traditional breeding and genetic engineering. Trees 20:131–144

    Article  Google Scholar 

  • Hosoo Y, Yoshii E, Negishi K, Taira H (2005) A histological comparison of the development of pollen and female gametophytes in fertile and sterile Cryptomeria japonica. Sex Plant Reprod 18(2):81–89

    Article  Google Scholar 

  • Huang Y, Karnosky DF, Tauer CG (1993) Applications of biotechnology and molecular genetics to tree improvement. J Arbor 19(2):84–98

    Google Scholar 

  • IFB (2002) Heritage trees workshop meeting report. Institute of Forest Biotechnology, Research Triangle Park, NC

    Google Scholar 

  • James C (2005) Executive summary of global status of commercialized Biotech/GM Crops: 2005. ISAAA Briefs No. 34, ISAAA, Ithaca, NY

  • Köhne S, Neumann K, Pühler A, Broer I (1998) The heat-treatment induced reduction of the pat gene encoded herbicide resistance in Nicotiana tabacum is influenced by the transgene sequence. Plant Physiol 153:631–642

    Google Scholar 

  • Lambeth CC, Dougherty PM, Gladstone WT, McCullough RB, Wells OO (1984) Large-scale planting of North Carolina loblolly pine in Arkansas and Oklahoma: a case of gain versus risk. J For 82(12):736–741

    Google Scholar 

  • Lemmetyinen J, Sopanen T (2004) Modification of flowering in forest trees. In: Kumar S, Fladung M (eds) Molecular genetics and breeding of forest trees. Haworth, New York, pp 263–292

    Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17(4):183–189

    Article  Google Scholar 

  • Linacre NA, Ades PK (2004) Estimating isolation distances for genetically modified trees in plantation forestry. Ecol Model 179:247–257

    Article  Google Scholar 

  • Lindroth AM, Saarikoski P, Flygh G, Clapham D, Gronroos R, Thelander M, Ronne H, Arnold S von (2001) Two S-adenosylmethionine synthetase-encoding genes differentially expressed during adventitious root development in Pinus contorta. Plant Mol Biol 46:335–346

    Article  PubMed  CAS  Google Scholar 

  • Lolle SJ, Victor JL, Young JM, Pruitt RE (2005) Genome-wide non-mendelian inheritance of extra-genomic information in Arabidopsis. Nature 434(7032):505–509

    Article  PubMed  CAS  Google Scholar 

  • Lucier AA (1994) Criteria for success in managing forested landscapes. J For 92(7):20–25

    Google Scholar 

  • Lucier AA, Pait J, Farnum P (2002) A “green goal”: sustainable production of higher value raw materials. Solutions, pp 55–58

  • Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18(4):189–197

    Article  Google Scholar 

  • Martin AC, Zim HS, Nelson AL (1951) American wildlife and plants. Dover, New York

    Google Scholar 

  • Mathews JH, Campbell MM (2000) The advantages and disadvantages of the application of genetic engineering to forest trees: a discussion. Forestry 73(4):372–380

    Article  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Meagher TR, Belanger FC, Day PR (2003) Using empirical data to model transgene dispersal. Proc R Soc Lond 358:1157–1162

    CAS  Google Scholar 

  • Meilan R, Ellis D, Pilate G, Brunner AM, Skinner J (2004) Accomplishments and challenges in genetic engineering of forest trees. In: Strauss SH, Bradshaw HD (eds) The bioengineered forest: challenges to science and society. resources for the future. Washington DC, pp 36–51

  • Meirmans P, Gros-Louis M-C, Lamothe M, Guigou G, Khasa D, Bousquet J, Isabel N (2005) Evaluation of gene flow between exotic and native tree species. Poster at IUFRO Tree Biotechnology 2005 meeting. Pretoria, South Africa, 6–11 November 2005

  • Nathan R, Safriel UN, Noy-Meir I (2001) Field validation and sensitivity analysis of a mechanistic model for tree seed dispersal by wind. Ecology (82)2:374–388

    Article  Google Scholar 

  • Nathan R, Horn HS, Chave J, Levin SA (2002a) Mechanistic models for tree seed dispersal by wind in dense forests and open landscapes. In: Galetti, M, Levey DJ, Silva WR (eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, Portland, OR, pp 69–82

    Google Scholar 

  • Nathan R, Katul GG, Horn HS, Thomas SM, Oren R, Avissar R, Pacala SW, Levin SA (2002b) Mechanisms of long-distance dispersal of seeds by wind. Nature 148:409–413

    Article  CAS  Google Scholar 

  • NASS (2005) Corn planted acreage up 1 percent from 2004, soybean acreage down 3 percent, all wheat acreage down 3 percent, all cotton acreage up 3 percent. Agricultural Statistics Board, National Agricultural Statistics Service, US Department of Agriculture, Washington, DC

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348

    Article  Google Scholar 

  • Popper KR (1959) The logic of scientific discovery. Routledge, London New York

    Google Scholar 

  • Punjar ZK (2001) Genetic engineering of plants to enhance resistance to fungal pathogens: a review of progress and future prospects. Can J Plant Pathol 23:216–235

    Article  Google Scholar 

  • Raemdonck DV, Jaziri M, Boerjan W, Baucher M (2001) Advances in the improvement of forest trees through biotechnology. Belg J Bot 134(1):64–78

    Google Scholar 

  • Rockwood DL, Naidu CV, Carter DR, Rahmani M, Spriggs TA, Lin C, Alker GR, Isebrands JG, Segrest SA (2004) Short-rotation woody crops and phytoremediation: opportunities for agroforestry? Agrofor Syst 61:51–63

    Article  Google Scholar 

  • Rood SB, Kalischuk AR, Polzin ML, Braatne JH (2003) Branch propagation, not cladoptosis, permits dispersive, clonal reproduction of riparian cottonwoods. Forest Ecol Manag 186:227–242

    Article  Google Scholar 

  • Roughgarden J (1996) Theory of population genetics and evolutionary ecology-an introduction. Prentice-Hall, Upper Saddle River, NJ

    Google Scholar 

  • Schnoor JL, Licht LA, McCutcheon SC, Wolfe NL, Carreira LH (1995) Phytoremediation of contaminated soils and sediments. Environ Sci Technol 29:318–323

    Article  Google Scholar 

  • Schuster WSF, Mitton JB (2000) Paternity and gene dispersal in limber pine (Pinus flexilis James). Genetic Soc Great Brit 84:348–361

    CAS  Google Scholar 

  • Scorza R, Callahan A, Levy L, Damsteegt V, Webb K, Ravelonandro M (2001) Post-transcriptional gene silencing in plum pox virus resistant transgenic European plum containing the plum pox potyvirus coat protein gene. Transgenic Res 10(3):201–209

    Article  PubMed  CAS  Google Scholar 

  • Sedjo RA (2005a) Genetically engineered forests: financial and economic assessment to the future (draft report). FAO, Rome, p 58

    Google Scholar 

  • Sedjo RA (2005b) Will developing countries be the early adopters of genetically engineered forests? AgBioForum 8(4) http://www.agbioforum.org

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792

    Article  PubMed  CAS  Google Scholar 

  • Slavov GT, DiFazio SP, Strauss SH (2004) Gene flow in forest trees: gene migration patterns and landscape modeling of transgene dispersal in hybrid poplar. In: Bartsch D, den Nijs HCM, Sweet J (eds) Introgression from genetically modified plants into wild relatives. CABI, Oxfordshire Cambridge, pp 89–106

    Google Scholar 

  • Snow AA (2002) Transgenic crops—why gene flow matters. Nat Biotech 20:542

    Article  CAS  Google Scholar 

  • Snow AA, Andersen B, Jorgensen RB (1999) Costs of transgenic herbicide resistance introgressed from Brassica napus into weedy B. rapa. Mol Ecol 8:605–615

    Article  Google Scholar 

  • Snow A, Mallory-Smith C, Ellstrand N, Holt J, Quemada H, Spencer L (2002) In: Meeting proceedings of the scientific methods workshop: ecological and agronomic consequences of gene flow from transgenic crops to wild relatives. The Ohio State University, Columbus. http://www.biiosci.ohio-state.edu/~asnowlab/Proceedings.pdf

  • Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM (2003) A Bt transgene reduces herbivory and enhances fecundity in wild sunflowers. Ecol Appl 13(2):279–286

    Article  Google Scholar 

  • Sork VL, Campbell D, Dyer R, Fernandez J, Nason J, Petit R, Smouse P, Steinberg E (1998) Proceedings from a workshop on gene flow in fragmented, managed, and continuous populations. National Center for Ecological Analysis and Synthesis, University of California-Santa Barbara. http://www.nceas.ucsb.edu/nceas-web/projects/2057/nceas-paper3/

  • Stewart CN Jr, All JN, Raymer PL, Ramachandran S (1997) Increased fitness of transgenic insecticidal rapeseed under insect pressure. Mol Ecol 6:773–779

    Article  Google Scholar 

  • Stockwell CA, Hendry AP, Kinnison MT (2003) Contemporary evolution meets conservation biology. Trends Ecol Evol 18(2):94–101

    Article  Google Scholar 

  • Strauss SH, Bradshaw HD (2004) The bioengineered forest challenges for science and society. Resources for the Future, Washington DC

    Google Scholar 

  • Strauss SH, Howe GT, Goldfarb B (1991) Prospects for genetic engineering of insect resistance in trees. For Ecol Manag 43:181–209

    Article  Google Scholar 

  • Su X-H, Zhang B-Y, Huang Q-J, Huang L-J, Zhang X-H (2003) Advances in tree genetic engineering in China. http://fao.org/docrep/article/wfc/xii/280-b2.htm

  • Teich AH (1975) Growth reduction due to cone crops on precocious white spruce provenances. Environment Canada Bi-monthly Research Notes 31:6

    Google Scholar 

  • Thompson CJ, Thompson BJP, Ades PK, Cousens R, Garnier-Gere P, Landman K, Newbigin E, Burgman MA (2003) Model-based analysis of the likelihood of gene introgression from genetically modified crops into wild relatives. Ecol Model 162:199–209

    Article  Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. Springer, Berlin Heidelberg New York

    Google Scholar 

  • van Deusen PC (1999) Multiple solution harvest scheduling. Silva Fenn 33:207–216

    Google Scholar 

  • van Deusen PC (2001) Scheduling spatial arrangement and harvest simultaneously. Silva Fenn 35(1):85–92

    Google Scholar 

  • Walker J (2005) Branching out: Canadian views on forest biotechnology, public perceptions of forest biotechnology. http://biostrategy.gc.ca/english/view.asp?pmiid=804&x=809, accessed March 30, 2006

  • Williams CG (2006a) Landscapes, genomics and transgenic conifers. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Williams C (2006b) Opening Pandora’s box: governance for genetically modified forests. ISB News Report http://www.isb.vt.edu/news/2006/jan06.pdf

  • Williams CG, Davis BH (2005) Rate of transgene spread via long-distance seed dispersal in Pinus taeda. For Ecol Manag 217:95–102

    Article  Google Scholar 

  • Wilson VR, Owens JN (2003) Histology of sterile male and female cones in Pinus monticola (western white pine). Sex Plant Reprod 15(6):301–310

    Google Scholar 

  • Wright T (2005) Swiss voters approve ban on genetically altered crops. New York Times Web site: http://nytimes.com/2005/11/28/business/

  • Xie Q, Guo HS, Dallman G, Fang S, Weissman AM, Chua NH (2002) SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419:167–170

    Article  CAS  Google Scholar 

  • Yanchuk AD (2001) The role and implications of biotechnological tools in forestry. Unasylva 52(1):53–61

    Google Scholar 

  • Yin R, Sedjo R (2001) Is this the age of intensive management? A study of loblolly pine on Georgia’s Piedmont. J For 99(12):10–17

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Farnum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farnum, P., Lucier, A. & Meilan, R. Ecological and population genetics research imperatives for transgenic trees. Tree Genetics & Genomes 3, 119–133 (2007). https://doi.org/10.1007/s11295-006-0063-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0063-z

Keywords

Navigation