Skip to main content
Log in

Difference between the transpiration rates of Moso bamboo (Phyllostachys pubescens) and Japanese cedar (Cryptomeria japonica) forests in a subtropical climate in Taiwan

  • Special Feature: Original Article
  • Filling the Gaps
  • Published:
Ecological Research

Abstract

Bamboo forests have been expanding rapidly in Asian countries for the past 50 years. Whether natural or artificial, this expansion involves the replacement of other vegetation types by bamboo, which could impact the local water cycle. Previous studies in Japan have reported that bamboo forests have higher transpiration than coniferous forests under temperate climates, but it is unknown whether this finding applies to subtropical climates. Thus, we examined whether a Moso bamboo (Phyllostachys pubescens) forest exhibits higher transpiration in a subtropical climate. We used the sap-flux method to estimate the stand transpiration (E) of Moso bamboo and Japanese cedar (Cryptomeria japonica) forests in Taiwan. As was observed in the Japanese studies, annual E for bamboo (478 mm) was higher than that for cedar (122 mm), although we found a difference in the seasonality of E between the Taiwanese and Japanese sites. Canopy conductance (Gc) for bamboo was higher than that for cedar in Taiwan, which was reported previously for Japan. Gc for bamboo in Taiwan was comparable to that in Japan, despite a difference in the leaf area index (LAI). Gc for cedar in Taiwan was lower than that in Japan. This difference in Gc between Taiwan and Japan corresponded to differences in the sapwood area and LAI. These findings suggest a significant change in E and, therefore, the terrestrial water and carbon cycle, regardless of different climates, when Japanese cedar forests are replaced by Moso bamboo forests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Chen X, Zhang X, Zhang Y, Booth T, He X (2009) Changes of carbon stocks in bamboo stands in China during 100 years. For Ecol Manag 258:1489–1496. doi:10.1016/j.foreco.2009.06.051

    Article  Google Scholar 

  • Chiu CW, Komatsu H, Katayama A, Otsuki K (2016) Scaling-up from tree to stand transpiration for a warm-temperate multi-specific broadleaved forest with a wide variation in stem diameter. J For Res 21:161–169. doi:10.1007/s10310-016-0532-7

    Article  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agric For Meteorol 54:107–136. doi:10.1016/0168-1923(91)90002-8

    Article  Google Scholar 

  • Dierick D, Hölscher D, Schwendenmann L (2010) Water use characteristics of a bamboo species (Bambusa blumeana) in the Philippines. Agric For Meteorol 150:1568–1578. doi:10.1016/j.agrformet.2010.08.006

    Article  Google Scholar 

  • Escalona JM, Bota J, Medrano H (2015) Distribution of leaf photosynthesis and transpiration within grapevine canopies under different drought conditions. VITIS J Grapevine Res 42:57

    Google Scholar 

  • Forestry Bureau of Taiwan (2015) http://www.forest.gov.tw/0002393

  • Forrester DI (2015) Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season. Tree Physiol 35:289–304. doi:10.1093/treephys/tpv011

    Article  PubMed  Google Scholar 

  • Granier A (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Ann Sci For 42:81–88 (French)

    Article  Google Scholar 

  • Granier A, Biron P, Lemoine D (2000) Water balance, transpiration and canopy conductance in two beech stands. Agric For Meteorol 100:291–308. doi:10.1016/S0168-1923(99)00151-3

    Article  Google Scholar 

  • Helman D, Osem Y, Yakir D, Lensky IM (2017) Relationships between climate, topography, water use and productivity in two key Mediterranean forest types with different water-use strategies. Agric For Meteorol 232:319–330. doi:10.1016/j.agrformet.2016.08.018

    Article  Google Scholar 

  • Hsieh IF, Kume T, Lin MY, Cheng CH, Miki T (2016) Characteristics of soil CO2 efflux under an invasive species, Moso bamboo, in forests of central Taiwan. Trees 30:1749–1759. doi:10.1007/s00468-016-1405-6

    Article  CAS  Google Scholar 

  • Ichihashi R, Komatsu H, Kume T, Onozawa Y, Shinohara Y, Tsuruta K, Otsuki K (2015) Stand-scale transpiration of two Moso bamboo stands with different culm densities. Ecohydrology 8:450–459. doi:10.1002/eco.1515

    Article  Google Scholar 

  • Isagi Y, Torii A (1997) Range expansion and its mechanism in a naturalized bamboo species, Phyllostachys pubescens, in Japan. J Sustain For 6:127–142. doi:10.1300/J091v06n01_08

    Article  Google Scholar 

  • James SA, Clearwater MJ, Meinzer FC, Goldstein G (2002) Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood. Tree Physiol 22:277–284

    Article  PubMed  Google Scholar 

  • Karlberg L, Ben-Gal A, Jansson PE, Shani U (2006) Modelling transpiration and growth in salinity-stressed tomato under different climatic conditions. Ecol Model 190:15–40. doi:10.1016/j.ecolmodel.2005.04.015

    Article  Google Scholar 

  • Komatsu H, Onozawa Y, Kume T, Tsuruta K, Kumagai TO, Shinohara Y, Otsuki K (2010) Stand-scale transpiration estimates in a Moso bamboo forest: II. Comparison with coniferous forests. For Ecol Manag 260:1295–1302. doi:10.1016/j.foreco.2010.06.040

    Article  Google Scholar 

  • Komatsu H, Onozawa Y, Kume T, Tsuruta K, Shinohara Y, Otsuki K (2012) Canopy conductance for a Moso bamboo (Phyllostachys pubescens) forest in western Japan. Agric For Meteorol 156:111–120. doi:10.1016/j.agrformet.2012.01.004

    Article  Google Scholar 

  • Komatsu H, Shinohara Y, Kumagai TO, Kume T, Tsuruta K, Xiang Y, Nogata M, Ichihashi R, Tateishi M, Shimizu T, Miyazawa Y, Laplace S, Han T, Chiu CW, Ogura A, Saito T, Otsuki K (2014) A model relating transpiration for Japanese cedar and cypress plantations with stand structure. For Ecol Manag 334:301–312. doi:10.1016/j.foreco.2014.08.041

    Article  Google Scholar 

  • Kuehl Y, Li Y, Henley G (2013) Impacts of selective harvest on the carbon sequestration potential in Moso bamboo (Phyllostachys pubescens) plantations. For Trees Livelihoods 22:1–18. doi:10.1080/14728028.2013.773652

    Article  Google Scholar 

  • Kumagai TO, Tateishi M, Shimizu T, Otsuki K (2008) Transpiration and canopy conductance at two slope positions in a Japanese cedar forest watershed. Agric For Meteorol 148:1444–1455. doi:10.1016/j.agrformet.2008.04.010

    Article  Google Scholar 

  • Kume T, Onozawa Y, Komatsu H, Tsuruta K, Shinohara Y, Umebayashi T, Otsuki K (2010) Stand-scale transpiration estimates in a Moso bamboo forest: (I) applicability of sap flux measurements. For Ecol Manag 260:1287–1294. doi:10.1016/j.foreco.2010.07.012

    Article  Google Scholar 

  • Li R, Werger MJA, During HJ, Zhong ZC (1998) Biennial variation in production of new shoots in groves of the giant bamboo Phyllostachys pubescens in Sichuan, China. Plant Ecol 135:103–112. doi:10.1023/A:1009761428401

    Article  Google Scholar 

  • Lin MY, Hsieh IF, Lin PH, Laplace S, Ohashi M, Chen TH, Kume K (2017) Moso bamboo (Phyllostachys pubescens) forests as a significant carbon sink? A case study based on 4-year measurements in central Taiwan. Ecol Res. doi:10.1007/s11284-017-1497-5

    Google Scholar 

  • McNaughton KG, Black TA (1973) A study of evapotranspiration from a Douglas fir forest using the energy balance approach. Water Resour Res 9:1579–1590. doi:10.1029/WR009i006p01579

    Article  Google Scholar 

  • Mei T, Fang D, Röll A, Niu F (2016) Water use patterns of four tropical bamboo species assessed with sap flux measurements. Front Plant Sci 6:1202. doi:10.3389/fpls.2015.01202

    Article  PubMed  PubMed Central  Google Scholar 

  • Pataki DE, Oren R (2003) Species differences in stomatal control of water loss at the canopy scale in a mature bottomland deciduous forest. Adv Water Resour 26:1267–1278. doi:10.1016/j.advwatres.2003.08.001

    Article  Google Scholar 

  • Ruiz P, Belcher M, Fu B, Yang X (2003) Forestry, poverty, and rural development: perspectives from the bamboo subsector. In: Hyde WF, Jintao X, Belcher B (eds) China’s forests: global lessons from market reforms: 151–176. Resources for the Future and CIFOR, Washington

    Google Scholar 

  • Running SW (1984) Microclimate control of forest productivity: analysis by computer simulation of annual photosynthesis/transpiration balance in different environments. Agric For Meteorol 32:267–288. doi:10.1016/0168-1923(84)90054-6

    Article  Google Scholar 

  • Running SW, Coughlan JC (1988) A general model of forest ecosystem processes for regional applications I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol Model 42:125–154. doi:10.1016/0304-3800(88)90112-3

    Article  CAS  Google Scholar 

  • Shinohara Y, Otsuki K (2015) Comparisons of soil–water content between a Moso bamboo (Phyllostachys pubescens) forest and an evergreen broadleaved forest in western Japan. Plant Species Biol 30:96–103. doi:10.1111/1442-1984.12076

    Article  Google Scholar 

  • Song X, Zhou G, Jiang H, Yu S, Fu J, Li W, Wang W, Ma Z, Peng C (2011) Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ Rev 19:418–428. doi:10.1139/a11-015

    Article  CAS  Google Scholar 

  • Tseng H, Chiu CW, Laplace S, Kume T (2017) Can we assume insignificant temporal changes in spatial variations of sap flux for year-round individual tree transpiration estimates? A case study on Cryptomeria japonica in central Taiwan. Trees. 1–13. doi: 10.1007/s00468-017-1542-6

  • Tu TC, Wang YN, Shiau EL (2003) Efficiency of carbon dioxide fixation by Phyllostachys pubescens. J Exp For Nat Taiwan Univ 17:187–194 (In Chinese)

    Google Scholar 

  • Wilson KB, Hanson PJ, Mulholland PJ, Baldocchi DD, Wullschleger SD (2001) A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance. Agric For Meteorol 106:153–168. doi:10.1016/S0168-1923(00)00199-4

    Article  Google Scholar 

  • Wullschleger SD, Meinzer FC, Vertessy RA (1998) A review of whole-plant water use studies in tree. Tree Physiol 18:499–512. doi:10.1093/treephys/18.8-9.499

    Article  PubMed  Google Scholar 

  • Yiping L, Yanxia L, Buckingham K, Henley G, Guomo Z (2010) Bamboo and climate change mitigation: a comparative analysis of carbon sequestration. Int Netw Bamboo Rattan 32

  • Yuen JQ, Fung T, Ziegler AD (2017) Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For Ecol Manag 393:113–138. doi:10.1016/j.foreco.2017.01.017

    Article  Google Scholar 

  • Zhang Z, Zhou J, Zhao P, Zhao X, Zhu L, Ouyang L, Ni G (2017) Validation and in situ application of a modified thermal dissipation probe for evaluating standing water use of a clumped bamboo: Bambusa chungii. Agric For Meteorol 239:15–23. doi:10.1016/j.agrformet.2017.02.023

    Article  Google Scholar 

  • Zhao XH, Zhao P, Zhang ZZ, Zhu LW, Niu JF, Ni GY, Hu YT, Ouyang L (2017) Sap flow-based transpiration in Phyllostachys pubescens: applicability of the TDP methodology, age effect and rhizome role. Trees 31:765–779

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Taiwan Ministry of Science and Technology (Grant Nos. 103-2313-B-002-009-MY3 and 100-2313-B-002-033-MY3) and partly by a Grant for Environmental Research Projects from the Sumitomo Foundation. We are grateful to the staff of the Experimental Forest, National Taiwan University, for providing samples. We thank Dr. Wei-Li Liang (National Taiwan University) for helpful comments. We also appreciate two anonymous reviewers’ helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophie Laplace.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laplace, S., Komatsu, H., Tseng, H. et al. Difference between the transpiration rates of Moso bamboo (Phyllostachys pubescens) and Japanese cedar (Cryptomeria japonica) forests in a subtropical climate in Taiwan. Ecol Res 32, 835–843 (2017). https://doi.org/10.1007/s11284-017-1512-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-017-1512-x

Keywords

Navigation