Skip to main content
Log in

Spatial patterns of soil and ecosystem respiration regulated by biological and environmental variables along a precipitation gradient in semi-arid grasslands in China

  • Original Article
  • Published:
Ecological Research

Abstract

Precipitation is a key environmental factor in determining ecosystem structure and function. Knowledge of how soil and ecosystem respiration responds to climate change (e.g., precipitation) and human activities (e.g., grazing or clipping) is crucial for assessing the impacts of climate change on terrestrial ecosystems and for improving model simulations and predictions of future global carbon (C) cycling in response to human activities. In this study, we examined the spatial patterns of soil and ecosystem respiration along a precipitation gradient from 167.7 to 398.1 mm in a semi-arid grassland. Our results showed that soil and ecosystem respiration increased linearly with increasing mean annual precipitation. The trends were similar to those of shoot biomass, litter and soil total C content along the precipitation gradient. Our results indicated that precipitation was the primary controlling factor in determining the spatial pattern of soil and ecosystem respiration in semi-arid grasslands in China. The linear/nonlinear relationships in this study describing the variations of the ecosystem carbon process with precipitation can be useful for model development, parameterization and validation at the regional scale to improve predictions of how carbon processes in grasslands respond to climate change, land use and grassland management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154

    Article  CAS  Google Scholar 

  • Austin AT (2002) Differential effects of precipitation on production and decomposition along a rainfall gradient in Hawaii. Ecology 83:328–338

    Google Scholar 

  • Austin AT, Sala OE (2002) Carbon and nitrogen dynamics across a natural precipitation gradient in Patagonia, Argentina. J Veg Sci 13:351–360

    Article  Google Scholar 

  • Báez S, Collins S, Pockman W, Johnson J, Small E (2012) Effects of experimental rainfall manipulations on Chihuahuan desert grassland and shrubland plant communities. Oecologia 172:1117–1127

    Article  PubMed  Google Scholar 

  • Bai YF, Wu JG, Qi X, Pan QM, Huang JH, Yang DL, Han XG (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia Plateau. Ecology 89:2140–2153

    Article  PubMed  Google Scholar 

  • Bremer DJ, Ham JM, Owensby CE, Knapp AK (1998) Responses of soil respiration to clipping and grazing in a tallgrass prairie. J Environ Qual 27:1539–1548

    Article  CAS  Google Scholar 

  • Chen QS, Wang QB, Han XG, Wan SQ, Li LH (2010) Temporal and spatial variability and controls of soil respiration in a temperate steppe in northern China. Glob Biogeochem Cycles. doi:10.1029/2009GB003538

    Google Scholar 

  • Chen ST, Huang Y, Zou JW, Shi YS, Lu YY, Zhang W, Hu ZH (2012) Interannual variability in soil respiration from terrestrial ecosystems in China and its response to climate change. Sci China Earth Sci 55:2091–2098

    Article  Google Scholar 

  • Chen WW, Zheng XH, Chen Q, Wolf B, Butterbach-Bahl K, Brüggemann N, Lin S (2013) Effects of increasing precipitation and nitrogen deposition on CH4 and N2O fluxes and ecosystem respiration in a degraded steppe in Inner Mongolia, China. Geoderma 192:335–340

    Article  CAS  Google Scholar 

  • Cheng WX, Chen QS, Xu YQ, Han XG, Li LH (2009) Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: contrasting regional patterns and global patterns. Glob Biogeochem Cycles. doi:10.1029/2008GB003315

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440:165–173

    Article  CAS  PubMed  Google Scholar 

  • Easterling DR, Meehl GA, Parmesan C, Changnon SA, Karl TR, Mearns LO (2000) Climate extremes: observations, modeling, and impacts. Science 289:2068–2074

    Article  CAS  PubMed  Google Scholar 

  • Epstein HE, Lauenroth WK, Burke IC, Coffin DP (1996) Ecological responses of dominant grasses along two climatic gradients in the Great Plains of the United States. J Veg Sci 7:777–788

    Article  Google Scholar 

  • Fang JY, Piao SL, Tang ZY, Peng CH, Ji W (2001) Interannual variability in net primary production and precipitation. Science 293:1723

    Article  CAS  PubMed  Google Scholar 

  • Gavrichkova O, Moscatelli MC, Kuzyakov Y, Grego S, Valentini R (2010) Influence of defoliation on CO2 efflux from soil and microbial activity in a Mediterranean grassland. Agric Ecosyst Environ 136:87–96

    Article  CAS  Google Scholar 

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  CAS  PubMed  Google Scholar 

  • Hogberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Hogberg MN, Nyberg G, Ottosson-Lofvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  CAS  PubMed  Google Scholar 

  • Hou LY, Wang ZP, Wang JM, Wang B, Zhou SB, Li LH (2012) Growing season in situ uptake of atmospheric methane by desert soils in a semiarid region of northern China. Geoderma 189:415–422

    Article  Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004a) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141:254–268

    Article  PubMed  Google Scholar 

  • Huxman TE, Smith MD, Fay PA, Knapp AK, Shaw MR, Loik ME, Smith SD, Tissue DT, Zak JC, Weltzin JF, Pockman WT, Sala OE, Haddad BM, Harte J, Koch GW, Schwinning S, Small EE, Williams DG (2004b) Convergence across biomes to a common rain-use efficiency. Nature 429:651–654

    Article  CAS  PubMed  Google Scholar 

  • Jia XS, Shao MA, Wei XR (2012) Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agric Forest Meteorol 166:32–40

    Article  Google Scholar 

  • Knapp AK, Smith MD (2001) Variation among biomes in temporal dynamics of aboveground primary production. Science 291:481–484

    Article  CAS  PubMed  Google Scholar 

  • Lauenroth WK, Sala OE (1992) Long-term forage production of North American shortgrass steppe. Ecol Appl 2:397–403

    Article  Google Scholar 

  • Li GY, Sun SC (2011) Plant clipping may cause overestimation of soil respiration in a Tibetan alpine meadow, southwest China. Ecol Res 26:497–504

    Article  Google Scholar 

  • Liu XZ, Wan SQ, Su B, Hui DF, Luo YQ (2002) Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem. Plant Soil 240:213–223

    Article  CAS  Google Scholar 

  • Liu XJ, Duan L, Mo JM, Du EZ, Shen JL, Lu XK, Zhang Y, Zhou XB, He CE, Zhang FS (2011) Nitrogen deposition and its ecological impact in China: an overview. Environ Pollut 159:2251–2264

    Article  CAS  PubMed  Google Scholar 

  • Luo YQ, Zhou XH (2010) Soil respiration and the environment. Academic Press, San Diego

    Google Scholar 

  • Luo YQ, Wan SQ, Hui DF, Wallace LL (2001) Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413:622–625

    Article  CAS  PubMed  Google Scholar 

  • McCulley RL, Burke IC, Nelson JA, Laueroth WK, Knapp AK, Kelly EF (2005) Regional patterns in carbon cycling across the Great Plains of North America. Ecosystems 8:106–121

    Article  CAS  Google Scholar 

  • McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Change Biol 19:1347–1357

    Article  Google Scholar 

  • Melillo JM, McGuire AD, Kicklighter DW, Moore B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  CAS  Google Scholar 

  • Mikola J, Kytöviita MM (2002) Defoliation and the availability of currently assimilated carbon in the Phleum pratense rhizosphere. Soil Biol Biochem 34:1869–1874

    Article  CAS  Google Scholar 

  • Mokany K, Raison RJ, Prokushkin AS (2006) Critical analysis of root: shoot ratios in terrestrial biomes. Glob Change Biol 12:84–96

    Article  Google Scholar 

  • Moriyama A, Yonemura S, Kawashima S, Du M, Tang Y (2013) Environmental indicators for estimating the potential soil respiration rate in alpine zone. Ecol Indicators 32:245–252

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (eds) Methods of soil analysis. Part 3 Chemical methods. American Society of Agronomy, Madison, pp 961–1010

  • Ni J (2004) Estimating net primary productivity of grasslands from field biomass measurements in temperate northern China. Plant Ecol 174:217–234

    Article  Google Scholar 

  • Niu SL, Wu MY, Han Y, Xia JY, Zhang Z, Yang HJ, Wan SQ (2010) Nitrogen effects on net ecosystem carbon exchange in a temperate steppe. Glob Change Biol 16:144–155

    Article  Google Scholar 

  • Paruelo JM, Lauenroth WK, Burke IC, Sala OE (1999) Grassland precipitation-use efficiency varies across a resource gradient. Ecosystems 2:64–68

    Article  Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    Article  PubMed  Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44:81–99

    Article  Google Scholar 

  • Raich JW, Potter CS, Bhagawati D (2002) Interannual variability in global soil respiration, 1980–94. Glob Change Biol 8:800–812

    Article  Google Scholar 

  • Sala OE, Parton WJ, Joyce LA, Lauentoth WK (1988) Primary production of the central grassland region of the United States. Ecology 69:40–45

    Article  Google Scholar 

  • Schenk HJ, Jackson RB (2002) Rooting depths, lateral root spreads and below-ground/above-ground allometries of plants in water-limited ecosystems. J Ecol 90:480–494

    Article  Google Scholar 

  • Shahzad T, Chenu C, Repinçay C, Mougin C, Ollier JL, Fontaine S (2012) Plant clipping decelerates the mineralization of recalcitrant soil organic matter under multiple grassland species. Soil Biol Biochem 51:73–80

    Article  CAS  Google Scholar 

  • Shi Y, Baumann F, Ma Y, Song C, Kühn P, Scholten T, He JS (2012) Organic and inorganic carbon in the topsoil of the Mongolian and Tibetan grasslands: pattern, control and implications. Biogeosciences 9:2287–2299

    Article  CAS  Google Scholar 

  • Simmons JA, Fernandez IJ, Briggs RD, Delaney MT (1996) Forest floor carbon pools and fluxes along a regional climate gradient in Maine, USA. Forest Ecol Manag 84:81–95

    Article  Google Scholar 

  • Wan SQ, Luo YQ (2003) Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob Biogeochem Cycles. doi:10.1029/2002GB001971

    Google Scholar 

  • Xu LK, Baldocchi DD, Tang JW (2004) How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature. Glob Biogeochem Cycles. doi:10.1029/2004GB002281

    Google Scholar 

  • Yang YH, Fang JY, Ma WH, Wang W (2008) Relationship between variability in aboveground net primary production and precipitation in global grasslands. Geophys Res Lett. doi:10.1029/2008GL035408

    Google Scholar 

  • Yuan WP, Luo YQ, Li XL, Liu SG, Yu GR, Zhou T, Bahn M, Black A, Desai AR, Cescatti A, Marcolla B, Jacobs C, Chen JQ, Aurela M, Bernhofer C, Gielen B, Bohrer G, Cook DR, Dragoni D, Dune AL, Gianelle D, Grünwald T, Ibrom A, Leclerc MY, Lindroth A, Liu HP, Marchesini LB, Montagnani L, Pita G, Rodeghiero M, Rodrigues A, Starr G, Stoy PC (2011) Redefinition and global estimation of basal ecosystem respiration rate. Glob Biogeochem Cycles. doi:10.1029/2011GB004150

    Google Scholar 

  • Zhou GS, Wang Y, Wang S (2002) Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. J Veg Sci 13:361–368

    Article  Google Scholar 

  • Zhou XH, Sherry RA, Yuan A, Wallace LL, Luo YQ (2006) Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Glob Biogeochem Cycles. doi:10.1029/2005GB002526

    Google Scholar 

  • Zhou XH, Talley M, Luo YQ (2009) Biomass, litter, and soil respiration along a precipitation gradient in Southern Great Plains, USA. Ecosystems 12:1369–1380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Basic Research Program of China (2010CB833502). We thank Jianbin Gu and Linhe Li for their assistance in the field and lab work. We are grateful to Siziwang Banner, Xilinhot of the Inner Mongolian Grassland Ecosystem Research Station (IMGERS) and herdsmen for providing the experimental sites.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Linghao Li or Wenping Yuan.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Li, X., Liu, W. et al. Spatial patterns of soil and ecosystem respiration regulated by biological and environmental variables along a precipitation gradient in semi-arid grasslands in China. Ecol Res 31, 505–513 (2016). https://doi.org/10.1007/s11284-016-1355-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-016-1355-x

Keywords

Navigation