Skip to main content
Log in

Dynamics of internal carbon resources during masting behavior in trees

  • Special Feature
  • New insights into mechanism and evolution of mast flowering: feedback between theory and experiment
  • Published:
Ecological Research

Abstract

Several proximate factors of masting have been provided. Here, I focus on the role of internal factors, especially the relationship between internal carbon resources and modular structures in trees. I summarize various studies of carbon resource allocation for reproduction during masting events in terms of the proximate factors of masting and discuss the modular structure in which trees accumulate and consume carbon resources as well as the timing when internal carbon resources affect masting since trees have complex resource dynamics among organs. The resource budget model, which provides a simple mechanistic explanation of the masting mechanism, is supported by various study lines. This model assumes decreasing levels of stored photosynthate after flowering and fruiting. According to several studies, however, carbon reserves do not decrease after fruiting in species in which the modules autonomously allocate current photosynthate for fruiting. In addition, it is important to elucidate when carbon resources affect masting events because during their long developmental processes, trees pass through various stages until they produce maturing fruits to create successful masting events. To explore the mechanisms of masting in future studies, it would be important to figure out how and when candidate factors (including nutrients other than carbon) may influence the entire reproduction process, for example, using field manipulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agusti M, Andreu I, Juan M, Almela V, Zacarias L (1998) Effects of ringing branches on fruit size and maturity of peach and nectarine cultivars. J Hortic Sci Biotechnol 73:537–540

    Google Scholar 

  • Allen RB, Platt KH (1990) Annual seedfall variation in Nothofagus solandri (Fagaceae), Canterbury, New Zealand. Oikos 57:199–206

    Article  Google Scholar 

  • Ashman TL (1992) Indirect costs of seed production within and between seasons in a gynodioecious species. Oecologia 92:266–272

    Article  Google Scholar 

  • Ashton PS, Givnish TJ, Appanah S (1988) Staggered flowering in the Dipterocarpaceae: new insights into floral induction and the evolution of mast fruiting in the aseasonal tropics. Am Nat 132:44–66

    Article  Google Scholar 

  • Bell G (1980) The costs of reproduction and their consequences. Am Nat 116:45–75

    Article  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    PubMed  CAS  Google Scholar 

  • Büsgen M, Münch E (1929) The structure and life of forest trees. Chapman and Hall Ltd., London

    Google Scholar 

  • Caesar JC, Macdonald AD (1983) Shoot development in Betula papyrifera. II. Comparison of vegetative and reproductive short-shoot growth. Can J Bot 61:3066–3071

    Article  Google Scholar 

  • Caesar JC, Macdonald AD (1984) Shoot development in Betula papyrifera. V. Effect of male inflorescence formation and flowering on long shoot development. Can J Bot 62:1708–1713

    Article  Google Scholar 

  • Calfapietra C, Ainsworth EA, Beier C, De Angelis P, Ellsworth DS, Godbold DL, Hendrey GR, Hickler T, Hoosbeek MR, Karnosky DF, King J, Körner Ch, Leakey ADB, Lewin KF, Liberloo M, Long SP, Lukac M, Matyssek R, Miglietta F, Nagy J, Norby RJ, Oren R, Percy KE, Rogers A, Scarascia-Mugnozza G, Stitt M, Taylor G, Ceulemans R (2010) Challenges in elevated CO2 experiments on forests. Trends Plant Sci 15:5–10

    Article  PubMed  CAS  Google Scholar 

  • Candolfi-Vasconcelos MC, Candolfi MP, Koblet W (1994) Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L. Planta 192:567–573

    Article  CAS  Google Scholar 

  • Cecich RA, Sullivan NH (1999) Influence of weather at time of pollination on acorn production of Quercus alba and Quercus velutina. Can J For Res 29:1817–1823

    Google Scholar 

  • Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137

    Article  PubMed  CAS  Google Scholar 

  • Corbesier L, Perilleux C, Bernier G (2002) C:N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant Cell Physiol 43:684–688

    Article  PubMed  CAS  Google Scholar 

  • Crone E, Miller E, Sala A (2009) How do plants know when other plants are flowering? Resource depletion, pollen limitation and mast-seeding in a perennial wildflower. Ecol Lett 12:1119–1126

    Article  PubMed  Google Scholar 

  • Dickson RE (1991) Assimilate distribution and storage. In: Raghavendra AS (ed) Physiology of trees. Wiley-Interscience, New York, pp 51–85

    Google Scholar 

  • Drobyshev I, Övergaard R, Saygin I, Niklasson M, Hickler T, Karlsson M, Sykes MT (2010) Masting behaviour and dendrochronology of European beech (Fagus sylvatica L.) in southern Sweden. For Ecol Manag 259:2160–2171

    Article  Google Scholar 

  • Falkengren-Grerup U, Eriksson H (1990) Changes in soil, vegetation and forest yield between 1947 and 1988 in beech and oak sites of southern Sweden. For Ecol Manag 38:37–53

    Article  Google Scholar 

  • Farmer RE (1981) Variation in seed yield of white oak. For Sci 27:377–380

    Google Scholar 

  • Fenner M (1998) The phenology of growth and reproduction in plants. Perspect Plant Ecol Evol Syst 1:78–91

    Article  Google Scholar 

  • Han Q, Kabeya D, Iio A, Kakubari Y (2008) Masting in Fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiol 28:1269–1276

    Article  PubMed  Google Scholar 

  • Han Q, Kabeya D, Hoch G (2011) Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment. Ann Bot. doi:10.1093/aob/mcr082 (in press)

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Hasegawa S, Koba K, Tayasu I, Takeda H, Haga H (2003) Carbon autonomy of reproductive shoots of Siberian alder (Alnus hirsuta var. sibirica). J Plant Res 116:183–188

    Article  PubMed  Google Scholar 

  • Healy WM, Lewis AM, Boose EF (1999) Variation of red oak acorn production. For Ecol Manag 116:1–11

    Article  Google Scholar 

  • Hilton GM, Packham JR (1997) A sixteen-year record of regional and temporal variation in the fruiting of beech (Fagus sylvatica L.) in England (1980–1995). Forestry 70:7–16

    Article  Google Scholar 

  • Hilton GM, Packham JR (2003) Variation in the masting of common beech (Fagus sylvatica L.) in northern Europe over two centuries (1800–2001). Forestry 76:319–328

    Article  Google Scholar 

  • Hoch G (2005) Fruit-bearing branchlets are carbon autonomous in mature broad-leaved temperate forest trees. Plant Cell Environ 28:651–659

    Article  CAS  Google Scholar 

  • Hoch G, Keel SG (2006) 13C Labelling reveals different contributions of photoassimilates from infructescences for fruiting. Plant Biol 8:606–614

    Article  PubMed  CAS  Google Scholar 

  • Hoch G, Richter A, Ch Körner (2003) Non-structural carbon compounds in temperate forest trees. Plant Cell Environ 26:1067–1081

    Article  CAS  Google Scholar 

  • Houle G (1999) Mast seeding in Abies balsamea, Acer saccharum and Betula alleghaniensis in an old growth, cold temperate forest of north-eastern North America. J Ecol 87:413–422

    Article  Google Scholar 

  • Ichie T, Kenta T, Nakagawa M, Sato K, Nakashizuka T (2005a) Resource allocation to reproductive organs during masting in the tropical emergent tree, Dipterocarpus tempehes. J Trop Ecol 21:237–241

    Article  Google Scholar 

  • Ichie T, Kenzo T, Kitahashi Y, Koike T, Nakashizuka T (2005b) How does Dryobalanops aromatica supply carbohydrate resources for reproduction in a masting year? Trees 19:703–710

    Article  Google Scholar 

  • Ims RA (1990) The ecology and evolution of reproductive synchrony. Trends Ecol Evol 5:135–140

    Article  PubMed  CAS  Google Scholar 

  • Inouye DW (2000) The ecological and evolutionary significance of frost in the context of climate change. Ecol Lett 3:457–463

    Article  Google Scholar 

  • Isagi Y, Sugimura K, Sumida A, Ito H (1997) How does masting happen and synchronize? J Theor Biol 187:231–239

    Article  Google Scholar 

  • Janzen DH (1971) Seed predation by animals. Annu Rev Ecol Syst 2:465–492

    Article  Google Scholar 

  • Janzen DH (1976) Why bamboos wait so long to flower. Annu Rev Ecol Syst 7:347–391

    Article  Google Scholar 

  • Karlsson PS (1994) The significance of internal nutrient cycling in branches for growth and reproduction of Rhododendron lapponicum. Oikos 70:191–200

    Article  Google Scholar 

  • Kelly D (1994) The evolutionary ecology of mast seeding. Trends Ecol Evol 9:465–470

    Article  PubMed  CAS  Google Scholar 

  • Kelly D, Hart DE, Allen RB (2001) Evaluating the wind pollination benefits of mast seeding. Ecology 82:117–126

    Article  Google Scholar 

  • Koenig WD, Knops JMH (2000) Patterns of annual seed production by Northern Hemisphere trees: a global perspective. Am Nat 155:59–69

    Article  PubMed  Google Scholar 

  • Koenig WD, Mumme RL, Carmen WJ, Stanback MK (1994) Acorn production by oaks in central coastal California: variation within and among years. Ecology 75:99–109

    Article  Google Scholar 

  • Kon H (2009) Is fluctuation of mast seeding predictable? In: Northern forestry in Japan: Q&A (the 60th anniversary publication of the foundation of Northern Forestry Association). Northern Forestry Association, Hokkaido, Japan, pp 52–53 (in Japanese)

  • Kon H, Noda T (2007) Experimental investigation on weather cues for mast seeding of Fagus crenata. Ecol Res 22:802–806

    Article  Google Scholar 

  • Kon H, Noda T, Terazawa K, Koyama H, Yasaka M (2005) Proximate factors causing mast seeding in Fagus crenata: the effects of resource level and weather cues. Can J Bot 83:1402–1409

    Article  Google Scholar 

  • Körner Ch (2003) Carbon limitation in trees. J Ecol 91:4–17

    Article  Google Scholar 

  • Körner Ch, Asshoff R, Bignucolo O, Hättenschwiller S, Keel SG, Pelaez-Riedl S, Pepin S, Siegwolf RTW, Zotz G (2005) Carbon flux and growth in mature deciduous forest trees exposed to elevated CO2. Science 309:1360–1362

    Article  PubMed  Google Scholar 

  • Lamlom SH, Savidge RA (2003) A reassessment of carbon content in wood: variation within and between 41 North American species. Biomass Bioenerg 25:381–388

    Article  CAS  Google Scholar 

  • Liberloo M, Tulva I, Raïm O, Kull O, Ceulemans R (2007) Photosynthetic stimulation under long-term CO2 enrichment and fertilization is sustained across a closed Populus canopy profile (EUROFACE). New Phytol 173:537–549

    Article  PubMed  CAS  Google Scholar 

  • Lloyd DG (1980) Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytol 86:69–79

    Article  Google Scholar 

  • Lloyd DG, Webb CJ (1977) Secondary sex characteristics in seed plants. Bot Rev 43:177–216

    Article  Google Scholar 

  • Lovett Doust J (1989) Plant reproductive strategies and resource allocation. Trends Ecol Evol 4:230–234

    Article  PubMed  CAS  Google Scholar 

  • Lovett Doust J, Lovett Doust L (1988) Modules of reproduction and reproduction in a dioecious clonal shrub, Rhus typhina. Ecology 69:741–750

    Article  Google Scholar 

  • Masaka K, Maguchi S (2001) Modeling the masting behaviour of Betula platyphylla var. japonica using the resource budget model. Ann Bot 88:1049–1055

    Article  Google Scholar 

  • Maynard Smith J (1976) Evolution and the theory of games. Am Sci 64:41–45

    Google Scholar 

  • McKone MJ, Kelly D, Lee WG (1998) Effect of climate change on mast-seeding species: frequency of mass flowering and escape from specialist insect seed predators. Glob Change Biol 4:591–596

    Article  Google Scholar 

  • Miyazaki Y, Hiura T, Kato E, Funada R (2002) Allocation of resources to reproduction in Styrax obassia in a masting year. Ann Bot 89:767–772

    Article  PubMed  Google Scholar 

  • Miyazaki Y, Hiura T, Funada R (2007) Allocation of photo-assimilated 13C from reproductive and non-reproductive shoots to fruits in Styrax obassia. Plant Species Biol 22:53–57

    Article  Google Scholar 

  • Miyazaki Y, Osawa T, Waguchi Y (2009) Resource level as a proximate factor influencing fluctuations in male flower production in Cryptomeria japonica D. Don. J For Res 14:358–364

    Article  CAS  Google Scholar 

  • Monks A, Kelly D (2006) Testing the resource-matching hypothesis in the mast seeding tree Nothofagus truncata (Fagaceae). Austral Ecol 31:366–375

    Article  Google Scholar 

  • Nakamura M, Muller O, Tayanagi S, Nakaji T, Hiura T (2010) Experimental branch warming alters tall tree leaf phenology and acorn production. Agr For Met 150:1026–1029

    Article  Google Scholar 

  • Neilson RP, Wullstein LH (1980) Catkin freezing and acorn production in Gambel oak in Utah, 1978. Am J Bot 67:426–428

    Article  Google Scholar 

  • Newell E (1991) Direct and delayed costs of reproduction in Aesculus californica. J Ecol 79:365–378

    Article  Google Scholar 

  • Nilsson SG, Wästljung U (1987) Seed predation and cross-pollination in mast-seeding beech (Fagus sylvatica) patches. Ecology 68:260–265

    Article  Google Scholar 

  • Norton DA, Kelly D (1988) Mast seedeing over 33 years by Dacrydium cupressinum Lamb. (rimu) (Podocarpaceae) in New Zealand: the importance of economics of scale. Funct Ecol 2:399–408

    Article  Google Scholar 

  • Numata S, Yasuda M, Okuda T, Kachi N, Noor NSM (2003) Temporal and spatial patterns of mass flowerings on the Malay Peninsula. Am J Bot 90:1025–1031

    Article  PubMed  Google Scholar 

  • Obeso JR (1998) Effects of defoliation and girdling on fruit production in Ilex aquifolium. Funct Ecol 12:486–491

    Article  Google Scholar 

  • Obeso JR (2002) The costs of reproduction in plants. New Phytol 155:321–348

    Article  Google Scholar 

  • Ohto M, Onai K, Furukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261

    Article  PubMed  CAS  Google Scholar 

  • Övergaard R, Gemmel P, Karlsson M (2007) Effects of weather conditions on mast year frequency in beech (Fagus sylvatica L.) in Sweden. Forestry 80:553–563

    Article  Google Scholar 

  • Perez-Ramos IM, Ourcival JM, Limousin JM, Rambal S (2010) Mast seeding under increasing drought: results from a long-term data set and from a rainfall exclusion experiment. Ecology 91:3057–3068

    Article  PubMed  CAS  Google Scholar 

  • Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79:1039–1047

    Google Scholar 

  • Rees M, Kelly D, Bjørnstad ON (2002) Snow tussocks, chaos, and the evolution of mast seeding. Am Nat 160:44–59

    Article  PubMed  Google Scholar 

  • Reznick D (1985) Costs of reproduction: an evaluation of the empirical evidence. Oikos 44:257–267

    Article  Google Scholar 

  • Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  • Satake A, Iwasa Y (2000) Pollen coupling of forest trees: forming synchronized and periodic reproduction out of chaos. J Theor Biol 203:63–84

    Article  PubMed  CAS  Google Scholar 

  • Satake A, Iwasa Y (2002a) Spatially limited pollen exchange and a long-range synchronization of trees. Ecology 83:993–1005

    Article  Google Scholar 

  • Satake A, Iwasa Y (2002b) The synchronized and intermittent reproduction of forest trees is mediated by the Moran effect, only in association with pollen coupling. J Ecol 90:830–838

    Article  Google Scholar 

  • Sauter JJ, van Cleve B (1991) Biochemical and ultrastructural results during starch-sugar-conversion in ray cells of Populus during cold adaptation. J Plant Physiol 139:19–26

    Article  CAS  Google Scholar 

  • Schauber EM, Turchin P, Simon C, Kelly D, Lee WG, Allen RB, Payton IJ, Wilson PR, Cowan PE, Brockie RE (2002) Masting by eighteen New Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83:1214–1225

    Article  Google Scholar 

  • Selas V (2000) Seed production of a masting dwarf shrub, Vaccinium myrtillus, in relation to previous reproduction and weather. Can J Bot 78:423–429

    Google Scholar 

  • Sharp WM, Chisman HH (1961) Flowering and fruiting in the white oaks. I. Staminate flowering through pollen dispersal. Ecology 42:365–372

    Article  Google Scholar 

  • Sharp WM, Sprague VG (1967) Flowering and fruiting in the white oaks: pistillate flowering, acorn development, weather, and yields. Ecology 48:243–251

    Article  Google Scholar 

  • Silvertown JW (1980) The evolutionary ecology of mast seeding in trees. Biol J Linn Soc Lond 14:235–250

    Article  Google Scholar 

  • Smith CC, Hamrick JL, Kramer CL (1990) The advantage of mast years for wind pollination. Am Nat 136:154–166

    Article  Google Scholar 

  • Sohn JJ, Policansky D (1977) The costs of reproduction in the Mayapple Podophyllum Peltatum (Berberidaceae). Ecology 58:1366–1374

    Article  Google Scholar 

  • Sork VL, Bramble JE (1993) Prediction of acorn crops in three species of North American oaks Quercus alba, Q rubra, and Q velutina. Ann Sci For 50(Suppl 1):128–136

    Article  Google Scholar 

  • Sork VL, Bramble JE, Sexton O (1993) Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 74:528–541

    Article  Google Scholar 

  • Sprugel DG, Hinckley TM, Schaap W (1991) The theory and practice of branch autonomy. Annu Rev Ecol Syst 22:309–334

    Article  Google Scholar 

  • Suzuki W, Osumi K, Masaki T (2005) Mast seeding and its spatial scale in Fagus crenata in northern Japan. For Ecol Manag 205:105–116

    Article  Google Scholar 

  • Tuomi J, Niemela P, Mannila R (1982) Resource allocation on dwarf shoots of birch (Betula pendula): reproduction and leaf growth. New Phytol 91:483–487

    Article  Google Scholar 

  • Tuomi J, Vuorisalo T, Niemela P, Nisula S, Jormalainen V (1988) Localized effects of branch defoliations on weight gain of female inflorescences in Betula pubescens. Oikos 51:327–330

    Article  Google Scholar 

  • Williamson MJ (1966) Premature abscissions in white oak acorn crops. For Sci 12:19–21

    Google Scholar 

  • Wolgast LJ, Trout JR (1979) Late spring frost affects yields of bear oak acorns. J Wild Manag 43:239–240

    Article  Google Scholar 

Download references

Acknowledgments

I appreciate Drs. G. Hoch, T. Hiura and R. Funada and two anonymous reviewers for their valuable comments on the manuscript. This study was partly supported by Global COE Program (Establishment of Center for Integrated Field Environmental Science), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuko Miyazaki.

About this article

Cite this article

Miyazaki, Y. Dynamics of internal carbon resources during masting behavior in trees. Ecol Res 28, 143–150 (2013). https://doi.org/10.1007/s11284-011-0892-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-011-0892-6

Keywords

Navigation