Skip to main content
Log in

The ontogenetic stoichiometric bottleneck stabilizes herbivore–autotroph dynamics

  • Note and Comment
  • Published:
Ecological Research

Abstract

In the ecological stoichiometry theory of population dynamics, ontogenetic changes in nutrient demand have been ignored. Here, I studied a stage-structured Daphnia–algae herbivore–autotroph model, in which the juveniles of the herbivore had a higher nutrient (phosphorous) demand for maturation than the adults for reproduction. The model predicted that while an increase in the juvenile nutrient demand (i.e., ontogenetic stoichiometric bottleneck) affects stage-specific performances in complex ways through nutrient dynamics and resource quality, in general it has stabilizing effects on the population dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andersen T (1997) Pelagic nutrient cycles: herbivores as sources and sinks. Springer, Berlin

    Google Scholar 

  • Andersen T, Elser JJ, Hessen DO (2004) Stoichiometry and population dynamics. Ecol Lett 7:884–900. doi:10.1111/j.1461-0248.2004.00646.x

    Google Scholar 

  • Becker C, Boersma M (2003) Differential effects of phosphorus and fatty acids on Daphnia magna growth and reproduction. Limnol Oceanogr 50:388–397

    Article  Google Scholar 

  • Carrillo P, Villar-Argaiz M, Medina-Sánchez JM (2001) Relationship between N:P ratio and growth rate during the life cycle of calanoid copepods: an in situ measurement. J Plankton Res 5:537–547

    Article  Google Scholar 

  • De Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar K, Claessen D, Persson L (2007) Food-dependent growth leads to overcompensation in stage-specific biomass when mortality increases: the influence of maturation versus reproduction regulation. Am Nat 170:E59–E76. doi:10.1086/520119

    Article  PubMed  Google Scholar 

  • De Roos AM, Schellekens T, Van Kooten T, Van De Wolfshaar K, Claessen D, Persson L (2008) Simplifying a physiologically structured population model to a stage-structured biomass model. Theor Popul Biol 73:47–62. doi:10.1016/j.tpb.2007.09.004

    Article  PubMed  Google Scholar 

  • DeMott WR (2003) Implications of element deficits for zooplankton growth. Hydrobiologia 491:177–184. doi:10.1023/A:1024408430472

    Article  Google Scholar 

  • DeMott WR, Gulati RD, Siewertsen J (1998) Effects of phosphorus deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43:1147–1161

    Article  CAS  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550. doi:10.1111/j.1461-0248.2000.00185.x

    Article  Google Scholar 

  • Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943. doi:10.1046/j.1461-0248.2003.00518.x

    Article  Google Scholar 

  • Færøvig PJ, Hessen DO (2003) Allocation strategies in crustacean stoichiometry: the potential role of phosphorus in the limitation of reproduction. Freshwat Biol 48:1782–1792. doi:10.1046/j.1365-2427.2003.01128.x

    Article  Google Scholar 

  • Grover JP (2003) The impact of variable stoichiometry on predator–prey interactions: a multinutrient approach. Am Nat 162:9–43. doi:10.1086/376577

    Article  Google Scholar 

  • Hall SR (2009) Stoichiometrically explicit food webs: feedbacks between resource supply, elemental constraints, and species diversity. Annu Rev Ecol Evol Syst 40:503–528. doi:10.1146/annurev.ecolsys.39.110707.173518

    Article  Google Scholar 

  • Hessen DO (1990) Carbon, nitrogen and phosphorus status in Daphnia at varying food conditions. J Plankton Res 12:1239–1249

    Article  CAS  Google Scholar 

  • Hessen DO, Andersen T (1992) The algae–grazer interface: feedback mechanisms linked to elemental ratios and nutrient cycling. Arch Hydrobiol 35:111–120

    Google Scholar 

  • Main T, Dobberfuhl DR, Elser JJ (1997) N:P stoichiometry and ontogeny in crustacean zooplankton: a test of the growth rate hypothesis. Limnol Oceanogr 42:1474–1478

    Article  CAS  Google Scholar 

  • Moe SJ, Stelzer RS, Forman MR, Harpole WS, Daufresne T, Yoshida T (2005) Recent advances in ecological stoichiometry: insights for population and community ecology. Oikos 109:29–39. doi:10.1111/j.0030-1299.2005.14056.x

    Article  Google Scholar 

  • Murdoch WW, Briggs CJ, Nisbet RM (2003) Consumer–resource dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Nakazawa T, Ohgushi T, Yamamura N (2009) Resource-dependent reproductive adjustment and the stability of consumer–resource dynamics. Popul Ecol 51:105–113. doi:10.1007/s10144-008-0101-9

    Article  Google Scholar 

  • Persson J, Fink P, Goto A, Hood JM, Jonas J, Kato S (2010) To be or not to be what you eat: regulation of stoichiometric homeostasis among autotrophs and heterotrophs. Oikos 119:741–751. doi:10.1111/j.1600-0706.2010.18545.x

    Article  CAS  Google Scholar 

  • Pilati A, Vanni MJ (2007) Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 116:1663–1674. doi:10.1111/j.2007.0030-1299.15970.x

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, New Jersey

    Google Scholar 

  • Sterner RW, Schulz KL (1998) Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32:261–279. doi:10.1023/A:1009949400573

    Article  Google Scholar 

  • Urabe J, Sterner RW (2001) Contrasting effects of different types of resource depletion on life-history traits in Daphnia. Funct Ecol 15:165–174. doi:10.1046/j.1365-2435.2001.00511.x

    Article  Google Scholar 

  • Villar-Argaiz M, Sterner RW (2002) Life history bottlenecks in Diaptomus clavipes induced by phosphorus-limited algae. Limnol Oceanogr 47:1229–1233

    Article  Google Scholar 

  • Villar-Argaiz M, Medina-Sánchez JM, Carrillo P (2002) Linking life history strategies and ontogeny in crustacean zooplankton: implications for homeostasis. Ecology 83:1899–1914. doi:10.1890/0012-9658(2002)083[1899:LLHSAO]2.0.CO;2

    Article  Google Scholar 

  • Vrede T, Dobberfuhl DR, Kooijman SALM, Elser JJ (2004) Fundamental connections among organism C:N:P stoichiometry, macromolecular composition, and growth. Ecology 85:1217–1229. doi:10.1890/02-0249

    Article  Google Scholar 

Download references

Acknowledgments

Satoshi Kato and anonymous reviewers provided helpful comments on this manuscript. This research was supported by a Japan Society for the Promotion of Science Research Fellowship for Young Scientists (2103033) and Excellent Young Researchers Overseas Visit Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takefumi Nakazawa.

Appendices

Appendix 1

In this Appendix, I present some results with different parameter settings to test the robustness of the stabilizing effects of OSB. I examined the steady state of the system along a nutrient gradient N T for different levels of the juvenile nutrient demand q J (as in Fig. 1) by varying one parameter value and keeping the other parameters to the default values (see text). As examples, here I varied light-induced carrying capacity K (~1.5), herbivore mortality rate μ (~0.05), dilution rate d (~0.05), stage-specific resource availability ratio α (~2) or birth-to-maturity body mass ratio z (~0.05). In any case, I found that an increase in q J significantly stabilized the system (i.e., the bifurcation boundary shifted upward and the parameter region for stable coexistence increased). I also obtained qualitatively the same results when other parameter values were varied (results not shown). Therefore, it seems that the stabilizing effects of OSB are robust within the biologically meaningful parameter space. Notation is identical to that in Fig. 1.

figure a

Appendix 2

Here, I show that the stabilizing effects of OSB would be qualitatively robust regardless of which stage has a higher nutrient demand. I examined the steady state of the system along a nutrient gradient N T for different sets of (q J, q A) including situations where the adults had a higher P demand than the juveniles. I found that an increase in either q J or q A stabilized the system (i.e., the bifurcation boundary shifted upward and the parameter region for stable coexistence increased). The stabilizing effects of increasing q J (or q A) were larger when q A (or q J) was small. Panels are arranged along q J (column) and q A (row) (q h = 0.01, 0.015, 0.02 or 0.03). Notation is identical to that in Fig. 1.

figure b

About this article

Cite this article

Nakazawa, T. The ontogenetic stoichiometric bottleneck stabilizes herbivore–autotroph dynamics. Ecol Res 26, 209–216 (2011). https://doi.org/10.1007/s11284-010-0752-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-010-0752-9

Keywords

Navigation