Skip to main content
Log in

A revaluation of lake-phosphorus loading models using a Bayesian hierarchical framework

  • Original Article
  • Published:
Ecological Research

…the efficacy of predictive limnology is not a matter of opinion. It is a matter of record…For applied limnologists, predictive limnology…has shown what sort of ecology is effective, what sort of information will sway politicians and governments to action, and how scientists can help to improve our world… R. H. Peters (1986)

Abstract

We revisit the phosphorus-retention and nutrient-loading models in limnology using a Bayesian hierarchical framework. This methodological tool relaxes a basic assumption of regression models fitted to data sets consisting of observations from multiple systems, i.e., the systems are assumed to be identical in behavior, and therefore the models have a single common set of parameters for all systems. Under the hierarchical structure, the models are dissected into levels (hierarchies) that explicitly account for the role of significant sources of variability (e.g., morphometry, mixing regime, geographical location, land-use patterns, trophic status), thereby allowing for intersystem parameter differences. Thus, the proposed approach is a compromise between site-specific (where limited local data is a problem) and globally common (where heterogeneous systems in wide geographical areas are assumed to be identical) parameter estimates. In this study, we used critical values of the mean lake depth \( \left( {\bar{z} = 10.3\,{\text{m}}} \right) \) and the hydraulic residence time (τ w = 2.6 years) to specify the hierarchical levels of the models. Our analysis demonstrates that the hierarchical configuration led to an improvement of the performance of six out of the seven hypothesized relationships used to predict lake-phosphorus concentrations. We also highlight the differences in the posterior moments of the group-specific parameter distributions, although the inference regarding the importance of different predictors (e.g., inflow-weighted total phosphorus input concentration, and hydraulic retention time) of lake phosphorus or the relative predictability of the models examined are not markedly different from an earlier study by Brett and Benjamin. The best fit to the observed data was obtained by the model that considers the first-order rate coefficient for total phosphorus loss from the lake as an inverse function of the lake hydraulic retention time. Finally, our analysis also demonstrates how the Bayesian hierarchical framework can be used for assessing the exceedance frequency and confidence of compliance of water-quality standards. We conclude that the proposed methodological framework will be very useful in the policy-making process and can optimize environmental management actions in space and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahlgren I, Frisk T, Kamp-Nielsen L (1988) Empirical and theoretical models of phosphorus loading, retention, and concentration vs. lake trophic state. Hydrobiologia 170:285–303

    CAS  Google Scholar 

  • Amrhein JF, Stow CA, Wible C (1999) Whole-fish versus filet polychlorinated-biphenyl concentration: an analysis using classification and regression tree models. Environ Toxicol Chem 18:1817–1823

    Article  CAS  Google Scholar 

  • Arhonditsis GB, Qian SS, Stow CA, Lamon EC, Reckhow KH (2007) Eutrophication risk assessment using Bayesian calibration of process-based models: application to a mesotrophic lake. Ecol Modell 208:215–229

    Article  Google Scholar 

  • Borsuk ME, Higdon D, Stow CA, Reckhow KH (2001) A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecol Modell 143:165–181

    Article  CAS  Google Scholar 

  • Borsuk ME, Stow CA, Reckhow KH (2002) Predicting the frequency of water quality standard violations: a probabilistic approach for TMDL development. Environ Sci Technol 36:2109–2115

    Article  CAS  PubMed  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Brett MT, Benjamin MM (2008) A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw Biol 53:194–211

    CAS  Google Scholar 

  • Brett MT, Arhonditsis GB, Mueller SE, Hartley DM, Frodge JD, Funke DE (2005a) Non-point source nutrient impacts on stream nutrient and sediment concentrations along a forest to urban gradient. Environ Manage 35:330–342

    Article  PubMed  Google Scholar 

  • Brett MT, Mueller SE, Arhonditsis GB (2005b) A daily time series analysis of stream water phosphorus transport along an urban to forest gradient in the Seattle area. Environ Manage 35:56–71

    Article  PubMed  Google Scholar 

  • Brooks SP, Gelman A (1998) Alternative methods for monitoring convergence of iterative simulations. J Comput Graph Stat 7:434–455

    Article  Google Scholar 

  • Burns NM, Rosa F (1980) In situ measurement of the settling velocity of organic-carbon particles and 10 species of phytoplankton. Limnol Oceanogr 25:855–864

    Google Scholar 

  • Canfield DE Jr, Bachmann RW (1981) Prediction of total phosphorus concentrations, chlorophyll a, and Secchi depths in natural and artificial lakes. Can J Fish Aquat Sci 38:414–423

    Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci USA 102:10002–10005

    Article  CAS  PubMed  Google Scholar 

  • Chapra SC (1975) Comment on ‘An empirical method of estimating the retention of phosphorus in lakes’ by WB Kirchner and PJ Dillon. Water Resour Res 11:1033–1034

    Article  CAS  Google Scholar 

  • Chapra SC (1997) Surface water-quality modeling. McGraw-Hill, New York

    Google Scholar 

  • Chapra SC, Reckhow KH (1979) Expressing the phosphorus loading concept in probabilistic terms. J Fish Res Board Can 36:225–229

    Google Scholar 

  • Clark JS (2005) Why environmental scientists are becoming Bayesians. Ecol Lett 8:2–14

    Article  Google Scholar 

  • Clark LA, Pregibon D (1992) Tree based models. In: Chambers JM, Hastie TJ (eds) Statistical models in S. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, pp 377–420

    Google Scholar 

  • Clark JS, Dietze M, Chakraborty S, Agarwal PK, Ibanez I, LaDeau S, Wolosin M (2007) Resolving the biodiversity paradox. Ecol Lett 10:647–659

    Article  PubMed  Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • Dillon PJ, Kirchner WB (1975) Reply to Chapra’s comment. Water Resour Res 11:1035–1036

    Article  CAS  Google Scholar 

  • Dillon PJ, Molot LA (1996) Long-term phosphorus budgets and an examination of a steady-state mass balance model for central Ontario lakes. Water Res 30:2273–2280

    Article  CAS  Google Scholar 

  • Dorazio RM, Johnson FA (2003) Bayesian inference and decision theory—a framework for decision making in natural resource management. Ecol Appl 13:556–563

    Article  Google Scholar 

  • Ellison AM (1996) An introduction to Bayesian inference for ecological research and environmental decision-making. Ecol Appl 6:1036–1046

    Article  Google Scholar 

  • Fricker H (1980) OECD eutrophication programme regional project Alpine lakes. Swiss Federal Board for Environmental Protection & OECD, Dübendorf

    Google Scholar 

  • Gelman A, Hill J (2007) Data analysis using regression and multilevel/hierarchical models, second printing. Cambridge University Press, New York

    Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (1995) Bayesian data analysis. Chapman & Hall, New York, p 518

    Google Scholar 

  • Gilks W, Roberts GO, Sahu SK (1998) Adaptive Markov chain Monte Carlo through regeneration. J Am Stat Assoc 93:1045–1054

    Article  Google Scholar 

  • Higgins JM, Kim BR (1981) Phosphorus retention models for Tennessee Valley Authority reservoirs. Water Resour Res 17:571–576

    Article  Google Scholar 

  • Janus LL, Vollenweider RA (1981) Summary report, the OECD cooperative programme on eutrophication report, Canadian contribution. Cananda Centre for Inland Waters, Burlington

    Google Scholar 

  • Jensen JP, Pedersen AR, Jeppesen E, Søndergaard M (2006) An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnol Oceanogr 51:791–800

    Article  CAS  Google Scholar 

  • Jones JR, Bachman RW (1976) Prediction of phosphorus and chlorophyll levels in lakes. J Water Pollut Control Fed 48:2176–2182

    CAS  Google Scholar 

  • Judge GG, Griffiths WE, Carter Hill R, Lütkepohl H, Lee TC (1985) The theory and practice of econometrics, 2nd edn. Wiley, New York

    Google Scholar 

  • Kirchner WB, Dillon PJ (1975) Empirical method of estimating retention of phosphorus in lakes. Water Resour Res 11:182–183

    Article  Google Scholar 

  • Lamon EC, Stow CA (1999) Sources of variability in microcontaminant data for Lake Michigan salmonids: statistical models and implications for trend detection. Can J Fish Aquat Sci 56(Suppl 1):71–85

    Article  Google Scholar 

  • Lamon EC, Stow CA (2004) Bayesian methods for regional-scale eutrophication models. Water Res 38:2764–2774

    Article  CAS  PubMed  Google Scholar 

  • Larsen DP, Mercier HT (1976) Phosphorus retention capacity of lakes. J Fish Res Board Can 33:1742–1750

    CAS  Google Scholar 

  • Lunn DJ, Thomas A, Best N, Spiegelhalter D (2000) WinBUGS—a Bayesian modelling framework: concepts, structure, and extensibility. Stat Comput 10:325–337

    Article  Google Scholar 

  • Magnuson JJ, Tonn WN, Banjeree A, Toivonnen J, Sanchez O, Rask M (1998) Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79:2941–2956

    Article  Google Scholar 

  • Malmaeus JM, Håkanson L (2004) Development of a lake eutrophication model. Ecol Modell 171:35–63

    Article  CAS  Google Scholar 

  • Malve O, Qian SS (2006) Estimating nutrients and chlorophyll a relationships in Finnish lakes. Environ Sci Technol 40:7848–7853

    Article  CAS  PubMed  Google Scholar 

  • Michielsens C, McAllister M (2004) A Bayesian hierarchical analysis of stock-recruit data: quantifying structural and parameter uncertainties. Can J Fish Aquat Sci 61:1032–1047

    Article  Google Scholar 

  • Nerini D, Dubrec JP, Mante C (2000) Analysis of oxygen rate time series in a strongly polluted lagoon using a regression tree method. Ecol Modell 133:95–105

    Article  CAS  Google Scholar 

  • Nürnberg GK (1984) The prediction of internal phosphorus load in lakes with anoxic hypolimnia. Limnol Oceanogr 29:111–124

    Article  Google Scholar 

  • Nürnberg GK (1996) Trophic state of clear and colored, soft- and hard- water lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv Manage 12:432–447

    Article  Google Scholar 

  • Nürnberg GK (1998) Prediction of annual and seasonal phosphorus concentration in stratified and polymictic lakes. Limnol Oceanogr 43:1544–1552

    Article  Google Scholar 

  • Nürnberg GK, LaZerte BD (2004) Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resour Res 40:W01105. doi:10.1029/2003WR002410

    Article  CAS  Google Scholar 

  • Nürnberg GK, Shaw M (1998) Productivity of clear and humic lakes: nutrients, phytoplankton, bacteria. Hydrobiologia 382:97–112

    Article  Google Scholar 

  • Ostrofsky ML (1978) Modification of phosphorus retention models for use with lakes with low areal water loading. J Fish Res Board Can 35:1532–1536

    CAS  Google Scholar 

  • Peters RH (1986) The role of prediction in limnology. Limnol Oceanogr 31:1143–1159

    Article  CAS  Google Scholar 

  • Prairie YT (1988) A test of the sedimentation assumptions of phosphorus input–output models. Arch Hydrobiol 111:321–327

    Google Scholar 

  • Prairie YT (1989) Statistical models for the estimation of net phosphorus sedimentation in lakes. Aquat Sci 51:192–210

    Article  Google Scholar 

  • Prairie YT, Marshall CT (1995) On the use of structured time-series to detect and test hypotheses about within-lakes relationships. Can J Fish Aquat Sci 52:799–803

    Article  Google Scholar 

  • Prairie YT, Peters RH, Bird DF (1995) Natural variability and the estimation of empirical relationships—a reassessment of regression methods. Can J Fish Aquat Sci 52:788–798

    Article  Google Scholar 

  • Qian SS, Anderson CW (1999) Exploring factors controlling variability of pesticide concentrations in the Willamette River Basin using tree-based models. Environ Sci Technol 33:3332–3340

    Article  CAS  Google Scholar 

  • Rast W, Lee GF (1978) Summary analysis of the North American (U.S. portion) OECD eutrophication programme: nutrient loading-lake response relationship and trophic state indices. Ecological Research Series, No. EPA-600/3-78-008, U.S. Environmental Protection Agency, Springfield, Virginia, USA

  • Reckhow KH (1977) Phosphorus models for lake management. PhD Thesis, Harvard University, Cambridge, MA. pp 304

  • Reckhow KH (1988) Empirical models for trophic state in southeastern U.S. lakes and reservoirs. Water Res Bull 24:723–734

    CAS  Google Scholar 

  • Reckhow KH (1993) A random coefficient model for chlorophyll–nutrient relationships in lakes. Ecol Modell 70:35–50

    Article  CAS  Google Scholar 

  • Reckhow KH, Chapra SC (1983) Engineering approaches for lake management. Vol. 1: data analysis and empirical modeling. Butterworth Publishers, Woburn

    Google Scholar 

  • Reynolds CS, Davies PS (2001) Sources and bioavailability of phosphorus fractions in freshwaters: a British perspective. Biol Rev 76:27–64

    Article  CAS  PubMed  Google Scholar 

  • Rivot E, Prévost E, Cuzol A, Baglinière J, Parent E (2008) Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method. Can J Fish Aquat Sci 65:117–133

    Article  Google Scholar 

  • Ryding SO (1980) Monitoring of inland waters. OECD eutrophication programme. The Nordic project, Nordforsk, Helsinki

    Google Scholar 

  • Sarnelle O (1999) Zooplankton effects on vertical particulate flux: testable models and experimental results. Limnol Oceanogr 44:357–370

    Article  Google Scholar 

  • Schindler DW, Fee EJ, Ruszczynski T (1978) Phosphorus input and its consequences for phytoplankton standing crop and production in the Experimental Lakes Area and in similar lakes. J Fish Res Board Can 35:190–196

    CAS  Google Scholar 

  • Snodgrass WJ, O’Melia CR (1975) Predictive model for phosphorus in lakes. Environ Sci Technol 9:937–944

    Article  CAS  Google Scholar 

  • Sommer U (1991) Phytoplankton: directional succession and forced cycles. In: Remmert H (ed) The mosaic-cycle concept of ecosystems. Springer, Berlin Heidelberg New York, pp 132–146

    Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2001) Retention and internal loading of phosphorus in shallow, eutrophic lakes. The Scientific World 1:427–442

    Google Scholar 

  • Søndergaard M, Stedmon C, Borch NH (2003) Fate of terrestrial dissolved organic carbon in estuaries: aggregation and bioavailability. Ophelia 57:161–176

    Google Scholar 

  • Spiegelhalter D, Best N, Carlin B, van der Linde A (2002) Bayesian measures of model complexity and fit. J Roy Stat Soc B 64:583–639 with discussion 699, 700

    Article  Google Scholar 

  • Swamy PAVB (1971) Statistical inference in random coefficient regression models. Springer, Berlin Heidelberg New York

    Google Scholar 

  • USEPA, 1975. A compendium of lakes and reservoir data collected by the national eutrophication survey in the northeast and northcentral United States. US Environmental Protection Agency working paper No. 474. Corvallis, Oregon, USA

  • Uttormark PD, Hutchins ML (1978) Input–output models as decision criteria for lake restoration. Technical report, Wis, Water Resources Center 78–03, pp 61

  • Vollenweider RA (1968) The scientific basis of lake and stream eutrophication, with particular reference to phosphorus and nitrogen as eutrophication factors. Paris: Organization for Economic Co-operation and Development. Technical report: DAS/CSI/68.27. pp 250

  • Vollenweider RA (1969) Möglichkeiten und grenzen elementarer modelle der stoffbilanz von seen. arch. Hydrobiol 66:1–36

    Google Scholar 

  • Vollenweider RA (1975) Input–output models with special reference to the phosphorus loading concept in limnology. Schweiz Z Hydrol 37:53–84

    Article  CAS  Google Scholar 

  • Vollenweider RA (1976) Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem Ist Ital Idrobiol 33:58–83

    Google Scholar 

  • Walker WW Jr. (1977) Some analytical methods applied to lake water quality problems. PhD Thesis, Harvard University, Cambridge, MA

  • Welch EB (1992) Ecological effects of wastewater: applied limnology and pollutant effects, 2nd edn. Chapman & Hall, New York

    Google Scholar 

  • Wikle CK (2003a) Hierarchical models in environmental science. Int Stat Rev 71:181–199

    Google Scholar 

  • Wikle CK (2003b) Hierarchical Bayesian models for predicting the spread of ecological processes. Ecology 84:1382–1394

    Article  Google Scholar 

  • Wyatt RJ (2002) Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model. Can J Fish Aquat Sci 59:695–706

    Article  Google Scholar 

  • Yeasted JG, Morel FMM (1978) Empirical insights into lake response to nutrient loadings, with application to models of phosphorus in lakes. Environ Sci Technol 12:195–201

    Article  CAS  Google Scholar 

  • Zhang W, Arhonditsis GB (2008) Predicting the frequency of water quality standard violations using Bayesian calibration of eutrophication models. J Great Lakes Res 34:698–720

    Article  CAS  Google Scholar 

  • Zhao J, Ramin M, Cheng V, Arhonditsis GB (2008a) Plankton community patterns across a trophic gradient: the role of zooplankton functional groups. Ecol Modell 213:417–436

    Article  Google Scholar 

  • Zhao J, Ramin M, Cheng V, Arhonditsis GB (2008b) Competition patterns among phytoplankton functional groups: how useful are the complex mathematical models? Acta Oecol 33:324–344

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by the UTSC Research Fellowships (Master of Environmental Science Program, Centre for Environment and University of Toronto at Scarborough) and the National Sciences and Engineering Research Council of Canada (NSERC, Discovery Grants). Gertrud Nurnberg and one anonymous reviewer offered excellent comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George B. Arhonditsis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 896 kb)

About this article

Cite this article

Cheng, V., Arhonditsis, G.B. & Brett, M.T. A revaluation of lake-phosphorus loading models using a Bayesian hierarchical framework. Ecol Res 25, 59–76 (2010). https://doi.org/10.1007/s11284-009-0630-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0630-5

Keywords

Navigation