Skip to main content
Log in

Factors affecting leaf morphology: a case study of Ranunculus natans C. A. Mey. (Ranunculaceae) in the arid zone of northwest China

  • Original Article
  • Published:
Ecological Research

Abstract

In order to examine the role of environmental factors affecting foliar morphology, we performed a case study of leaf morphological variation of Ranunculus natans found in the arid zone of northwest China. We found that foliar phenotypic variation differed significantly between populations. We described substantial positive correlations between altitude and leaf area (LA) as well as leaf perimeter (LP), and also between longitude and number of teeth, along with dissection index (DI). The pH, conductivity, and salinity of the environment caused a significant decrease in both LA and LP. Ranked in terms of their impacts on leaf morphology, the six selected factors were: altitude > pH > conductivity > salinity > longitude > latitude. We found that foliar morphological variations are functional responses to water-quantity factors (e.g., altitude and longitude at regional scales) and water-availability relation factors (e.g., pH, conductivity, and salinity at local scales), rather than to temperature-relation factors (latitude). Therefore, altitude and longitude, along with pH, conductivity, and salinity, are the main factors that significantly influence foliar morphology in the arid zone of China. We found that main factors played major roles in plant phenotypic plasticity in a complex ecosystem, although different combinations and interactions of environmental and geographical factors in each local environment may obscure the general trends in trait changes along environmental gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anonymous (1985) Nature geography of China (Pandect). Science Press, Beijing

  • Barrett SCH, Eckett CG, Husband BC (1993) Evolutionary processes in aquatic plant population. Aquat Bot 44:105–145. doi:10.1016/0304-3770(93)90068-8

    Article  Google Scholar 

  • Chabot B, Chabot J (1977) Effects of light and temperature on leaf anatomy and photosynthesis in Fragaria vesca. Oecologia 26:363–377. doi:10.1007/BF00345535

    Article  Google Scholar 

  • Chapin FS, Chapin MC (1981) Ecotypic differentiation of growth processes in Carex aquatilis along latitudinal and local gradients. Ecology 62:1000–1009. doi:10.2307/1936999

    Article  Google Scholar 

  • Cook CDK (1968) Phenotypic plasticity with particular reference to three amphibious plant species. In: Heywood V (ed) Modern methods in plant taxonomy. Academic Press, London, pp 97–111

    Google Scholar 

  • Cook SA, Johnson MP (1968) Adaptation to heterogeneous environments. I. Variation in heterophylly in Ranunculus flammula L. Evol Int J Org Evol 22:495–516. doi:10.2307/2406876

    Google Scholar 

  • Cunningham SA, Summerhayes B, Westoby M (1999) Evolutionary divergences in leaf structure and chemistry, comparing rainfall and soil nutrient gradients. Ecol Monogr 69:69–588

    Article  Google Scholar 

  • Deschamp PA, Cooke TJ (1985) Leaf dimorphism in the aquatic angiosperm Callitriche heterophylla. Am J Bot 72:1377–1387. doi:10.2307/2443509

    Article  Google Scholar 

  • Emery RJN, Chinnappa CC, Chmielewski JG (1994) Specialization, plant strategies, and phenotypic plasticity in populations of Stellaria longipes along an elevation gradient. Int J Plant Sci 155:9–23. doi:10.1086/297160

    Article  Google Scholar 

  • Fahn A, Cutler DF (1992) Xerophytes. Gegrüder Borntraeger, Berlin

    Google Scholar 

  • Feng SZ, Xu DF, Lei XY (1989) Nature geography of China. High Education Press, Beijing

    Google Scholar 

  • Fonseca CR, Overton JC, Collins B, Westoby M (2000) Shifts in trait-combinations along rainfall and phosphorus gradients. J Ecol 88:964–977. doi:10.1046/j.1365-2745.2000.00506.x

    Article  Google Scholar 

  • Fowler NL, Antonovics J (1981) Small-scale variability in the demography of transplants of two herbaceous species. Ecology 62:1450–1457 doi:10.2307/1941501

    Article  Google Scholar 

  • Givnish TJ (1987) Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol 106:131–160

    Google Scholar 

  • González-Rodríguez A, Oyama K (2005) Leaf morphometric variation in Quercus affinis and Q. laurina (Fagaceae), two hybridizing Mexican red oaks. Bot J Linn Soc 147:427–435. doi:10.1111/j.1095-8339.2004.00394.x

    Article  Google Scholar 

  • Greulich S, Barrat-segretain MH, Bornette G (2001) Basal rosette or floating leaf canopy–an example of plasticity in a rare aquatic macrophyte. Hydrobiologia 448:53–59. doi:10.1023/A:1017530102260

    Article  Google Scholar 

  • Hegazy AK, El Amry MI (1998) Leaf temperature of desert sand dune plants: perspectives on the adaptability of leaf morphology. Afr J Ecol 36:34–43. doi:10.1046/j.1365-2028.1998.109-89109.x

    Article  Google Scholar 

  • Hoeinghaus DJ, Winemiller KO, Birnbaum JS (2007) Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. J Biogeogr 34:324–328. doi:10.1111/j.1365-2699.2006.01587.x

    Article  Google Scholar 

  • Hovenden MJ, Vander Schoor JK (2003) Nature vs nurture in the leaf morphology of Southern beech, Nothofagus cuninghamii(Nothofagaceae). New Phytol 161:585–594. doi:10.1046/j.1469-8137.2003.00931.x

    Article  Google Scholar 

  • Junghans U, Polle A, Düchting P, Weiler E, Kuhlman B, Gruber F, Teichmann T (2006) Adaptation to high salinity in poplar involves changes in xylem anatomy and auxin physiology. Plant Cell Environ 29:1519–1531. doi:10.1111/j.1365-3040.2006.01529.x

    Article  CAS  PubMed  Google Scholar 

  • Kincaid DT, Schneider RB (1983) Quantification of leaf shape with a microcomputer and Fourier transform. Can J Bot 61:2333–2342. doi:10.1139/b83-256

    Article  Google Scholar 

  • Knight CA, Ackerly DD (2003) Evolution and plasticity of photosynthetic thermal tolerance, specific leaf area and leaf size: congeneric species from desert and coastal environments. New Phytol 160:337–347. doi:10.1046/j.1469-8137.2003.00880.x

    Article  CAS  Google Scholar 

  • Koch EW, Dawes CJ (1991) Ecotypic differentiation in populations of Ruppia maritima L. germinated from seeds and cultured under algae-free laboratory conditions. J Exp Mar Biol Ecol 152:145–159. doi:10.1016/0022-0981(91)90212-F

    Article  Google Scholar 

  • Körner C, Bannister P, Mark AF (1986) Altitudinal variation in stomatal conductance, nitrogen content and leaf anatomy in different plant life forms in New Zealand. Oecologia 69:577–588. doi:10.1007/BF00410366

    Article  Google Scholar 

  • Lynn DE, Waldren S (2001) Morphological variation in population of Ranunculus repens from the temporary limestone lakes (Turloughs) in the west of Ireland. Ann Bot (Lond) 87:9–17. doi:10.1006/anbo.2000.1293

    Article  Google Scholar 

  • Macdonald SE, Chinnappa CC (1989) Population differentiation for phenotypic plasticity in the Stellaria longipes complex. Am J Bot 76:1627–1637. doi:10.2307/2444400

    Article  Google Scholar 

  • Nardini A, Salleo S, Lo Gullo MA, Pitt F (2000) Different response to drought and freeze stress of Quercus ilex L. growing along a latitudinal gradient. Plant Ecol 148:139–147. doi:10.1023/A:1009840203569

    Article  Google Scholar 

  • Novoplansky A (1996) Developmental responses of individual Onobrychis plants to spatial heterogeneity. Vegetation 127:31–39. doi:10.1007/BF00054845

    Article  Google Scholar 

  • Santamaría L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-heterogeneity in a stressful environment. Acta Oecol 23:137–154. doi:10.1016/S1146-609X(02)01146-3

    Article  Google Scholar 

  • Santamaría L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De-Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in aquatic plant. Ecology 84:2454–2461. doi:10.1890/02-0431

    Article  Google Scholar 

  • Schlichting CD (1986) The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst 17:667–693. doi:10.1146/annurev.es.17.110186.003315

    Article  Google Scholar 

  • Schlichting CD, Pigliucci M (1998) Phenotypic evolution: a reaction norm perspective. Sinauer Associates, Sunderland

    Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. Freeman, New York

    Google Scholar 

  • Sultan SE (1987) Evolutionary implications of phenotypic plasticity in plants. Evol Biol 21:127–168

    Google Scholar 

  • Tang QC, Qu YG, Zhou ZC (1992) Hydrology and water resource utilization of arid region in China (In Chinese). Science Press, Beijing

    Google Scholar 

  • Vestergaard O, Sand-Jensen K (2000) Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat Bot 67:85–107. doi:10.1016/S0304-3770(00)00086-3

    Article  Google Scholar 

  • Volis S, Mendlinger S, Ward D (2002) Differentiation in populations of Hordeum spontaneum along a gradient of environmental productivity and predictability: life history and local adaptation. Biol J Linn Soc 77:479–490. doi:10.1046/j.1095-8312.2002.00120.x

    Article  Google Scholar 

  • Winn AA (1999) Is seasonal variation in leaf traits adaptive for annual plant Dicerandra linearifolia?. J Evol Biol 12:306–313. doi:10.1046/j.1420-9101.1999.00031.x

    Article  Google Scholar 

  • Winn AA, Evans AS (1991) Variation among populations of Prunella vulgaris L. in plastic responses to light. Funct Ecol 5:899–902. doi:10.2307/2389639

    Article  Google Scholar 

  • Wright IJ, Reich PB, Westoby M (2001) Strategy shifts in leaf physiology, structure and nutrient content between species of high and low rainfall and high and low nutrient habitats. Funct Ecol 15:423–434. doi:10.1046/j.0269-8463.2001.00542.x

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge anonymous reviewers for their constructive comments on the manuscript, and we also thank Dr. Wen Xiong and Lingfei Yu for field collecting. The National Natural Science Foundation of China (30740067) and (30870260), the Postdoctoral Science Foundation of China (20070420180), the Natural Science Foundation of Hubei Province (2007ABA147) and the key project of Hubei Provincial Department of Education (D20081006) supported this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

About this article

Cite this article

Li, Z., Yu, D. Factors affecting leaf morphology: a case study of Ranunculus natans C. A. Mey. (Ranunculaceae) in the arid zone of northwest China. Ecol Res 24, 1323–1333 (2009). https://doi.org/10.1007/s11284-009-0617-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-009-0617-2

Keywords

Navigation