Skip to main content
Log in

Lattice models in ecology and social sciences

  • Special Feature
  • Theoretical ecology
  • Published:
Ecological Research

Abstract

Random matching between individuals, or the complete-mixing model, is often assumed in analyzing evolutionary or population dynamics in ecology and game theory or other models in social sciences. Making and analyzing a model is not difficult under this simple assumption. However spatial- or network-structured populations, including the lattice model and the power-law network, are more realistic for many ecological and social phenomena than the complete-mixing model. In this review, I will show first that a lattice model can be useful in investigating the effect of neighborhood interactions on the dynamics, not only of plants and forests, but also of animal and human societies. Second, the lattice model promotes the evolution of spiteful behavior, even though it is well-known that the lattice model promotes the evolution of cooperation. Finally, different social networks result in traits, such as social norms, spreading at different speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2a–c
Fig. 3

Similar content being viewed by others

References

  • Aoki M (2001) Toward a comparative institutional analysis. MIT Press, Cambridge

    Google Scholar 

  • Barabasi A (2002) Linked: the new science of networks. Perseus, Cambridge

    Google Scholar 

  • Barabasi A, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512

    Article  PubMed  Google Scholar 

  • Carlson RO (1965) Adoption of educational innovations. Center for the Advanced Study of Educational Administrations, University of Oregon, Eugene

  • Cavalli-Sforza LL, Feldman MW (1981) Cultural transmission and evolution: a quantitative approach. Princeton University Press, Princeton

    Google Scholar 

  • Chao L, Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc Natl Acad Sci USA 78:6324–6328

    Article  PubMed  CAS  Google Scholar 

  • Clutton-Brock TH, Parker GA (1995) Punishment in animal societies. Nature 373:209–216

    Article  PubMed  CAS  Google Scholar 

  • Czaran T (1998) Spatiotemporal models of population and community dynamics. Chapman & Hall, London

    Google Scholar 

  • Durrett R, Levin SA (1997) Allelopathy in spatially distributed populations. J Theor Biol 185:165–171

    Article  PubMed  Google Scholar 

  • Ellner PS, Sasaki A, Haraguchi Y, Matsuda H (1998) Speed of invasion in lattice population models: pair-edge approximations. J Math Biol 36:469–484

    Article  Google Scholar 

  • Erdos P, Renyi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5:17

    Google Scholar 

  • Flack JC, Girvan M, de Waal FB, Krakauer DC (2006) Policing stabilizes construction of social niches in primates. Nature 439:426–429

    Article  PubMed  CAS  Google Scholar 

  • Gilbert N, Troitzch K (1999) Simulation for the social scientist. Open University Press, Buckingham

    Google Scholar 

  • Glimcher PW, Rustichini A (2004) Neuroeconomics: the consilience of brain and decision. Science 306:447–452

    Article  PubMed  CAS  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behavior. J Theor Biol 7:1–52

    Article  PubMed  CAS  Google Scholar 

  • Hanski I (1999) Metapopulation ecology. Oxford University Press, Oxford

    Google Scholar 

  • Henrich J, Boyd R (2001) Why people punish defectors: weak conformist transmission can stabilize costly enforcement of norms in cooperative dilemmas. J Theor Biol 208:79–89

    Article  PubMed  CAS  Google Scholar 

  • Iwasa Y, Nakamaru M, Levin SA (1998) Allelopathy of bacteria in a lattice population: competition between colicin-sensitive and colicin-producing strains. Evol Ecol 12:785–802

    Article  Google Scholar 

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311:88–90

    Article  PubMed  CAS  Google Scholar 

  • Kubo T, Iwasa Y, Furumoto N (1996) Forest dynamics with gap expansion: total gap area and gap size distribution. J Theor Biol 180:229–246

    Article  Google Scholar 

  • Levin SA (1999) Fragile dominion. Perseus, Cambridge

    Google Scholar 

  • Liljeros F, Edling CR, Amaral LAN, Stanley HE, Aberg Y (2001) The web of human sexual contacts. Nature 411:907–908

    Article  PubMed  CAS  Google Scholar 

  • Macy MW, Sato Y (2002) Trust, cooperation, and market formation in the U.S. and Japan. Proc Natl Acad Sci USA 99:7214–7220

    Article  PubMed  CAS  Google Scholar 

  • Matsuda H, Tamachi N, Ogita N, Sasaki A (1987) A lattice model for population biology. In: Teramoto E, Yamaguchi M (eds) Mathematical topics in biology: lecture notes in biomathematics, vol. 71. Springer, Berlin Heidelberg New York, pp 154–161

  • Matsuda H, Ogita N, Sasaki A, Sato K (1992) Statistical mechanics of population—the lattice Lotka-Volterra model. Prog Theor Phys 88:1035–1049

    Article  Google Scholar 

  • Matsui A (1992) Best response dynamics and socially stable strategies. J Econ Theor 57:343–362

    Article  Google Scholar 

  • Nakamaru M, Iwasa Y (2005) The evolution of altruism by costly punishment in the lattice structured population: score-dependent viability versus score-dependent fertility. Evol Ecol Res 7:853–870

    Google Scholar 

  • Nakamaru M, Iwasa Y (2006) The coevolution of altruism and punishment: role of the selfish punisher. J Theor Biol (in press)

    Google Scholar 

  • Nakamaru M, Kawata M (2004) Evolution of rumors that discriminate lying defectors. Evol Ecol Res 6:261–283

    Google Scholar 

  • Nakamaru M, Levin SA (2004) Spread of two linked social norms on complex interaction network. J Theor Biol 230:57–64

    Article  PubMed  Google Scholar 

  • Nakamaru M, Matsuda H, Iwasa Y (1997) The evolution of cooperation in a lattice-structured population. J Theor Biol 184:65–81

    Article  PubMed  CAS  Google Scholar 

  • Nakamaru M, Nogami H, Iwasa Y (1998) Score-dependent fertility model for the evolution of cooperation in a lattice. J Theor Biol 194:101–124

    Article  PubMed  CAS  Google Scholar 

  • Newman MEJ (2002) Spread of epidemic disease on networks. Phys Rev E 66:016128

    Article  CAS  Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 248:715–718

    Google Scholar 

  • Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction. Princeton University Press, Princeton

    Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  PubMed  CAS  Google Scholar 

  • Sigmund K, Hauert C, Nowak M (2001) Reward and punishment. Proc Natl Acad Sci USA 98:10757–10762

    Article  PubMed  CAS  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of small-world networks. Nature 393:1302–1305

    Article  Google Scholar 

  • Watts DJ, Dodds PS, Newman MEJ (2002) Identity and search in social networks. Science 296:1302–1305

    Article  PubMed  CAS  Google Scholar 

  • Wilson DS, Pollock GB, Dugatkin LA (1992) Can altruism evolve in purely viscous populations? Evol Ecol 5:220–230

    Google Scholar 

Download references

Acknowledgements

This work was done with the support of a JSPS Grant-in-Aid to M.N. (No.17770014). I thank Professor Yoh Iwasa and the Inamori Foundation for giving me an opportunity to present a lecture in the workshop celebrating the 2005 Kyoto Prize Laureate, Professor Simon A. Levin. I also thank anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mayuko Nakamaru.

About this article

Cite this article

Nakamaru, M. Lattice models in ecology and social sciences. Ecol Res 21, 364–369 (2006). https://doi.org/10.1007/s11284-006-0163-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11284-006-0163-0

Keywords

Navigation