Skip to main content
Log in

Finding and tracking local communities by approximating derivatives in networks

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Since various complex systems are represented by networks, detecting and tracking local communities has become a crucial task nowadays. Local community detection methods are getting much attention because they can address large networks. One famous class of local community detection is to find communities around a seed node. In this research, a novel local community detection method, inspired by geometric active contours, is proposed for finding a community surrounding an initial seed. While most of real world networks are dynamic and the majority of local community detection cannot tackle dynamic networks, the proposed model has the ability to track a local community in a dynamic network. The proposed model introduces and uses the derivative-based concepts curvature and gradient of the boundary of a connected sub-graph in networks. Then, a velocity function based on curvature and gradient is proposed to determine if the boundary of a community should evolve to include a neighbouring candidate. Approximating derivatives in discrete Euclidean space has a long history. However, compared to Euclidean space, graphs follow a non-uniform space in which the dimensionality, given by the the fluctuation in degrees of nodes, fluctuates from one node to another. This complexity complicates the approximation of derivatives which are needed for defining the curvature and gradient of a node in the boundary of a community. A new framework to approximate derivatives in graphs is proposed for such a purpose. For finding local communities, benchmarking our method against two recent methods indicates that it is capable of finding communities with equal or better conductance; and, for tracking dynamic local communities, benchmarking of the proposed method against ground-truth dataset shows a noticeable level of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19

Similar content being viewed by others

References

  1. Ahn, Y-Y, Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity in networks. Nature 466(7307), 761–764 (2010)

    Article  Google Scholar 

  2. Andersen, R., Lang, K.J.: Communities from seed sets. In: Proceedings of the 15th international conference on World Wide Web, pp 223–232. ACM (2006)

  3. Bagrow, J.P., Bollt, E.M.: Local method for detecting communities. Phys. Rev. E 72(4), 046108 (2005)

    Article  Google Scholar 

  4. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56 (1-3), 89–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brandes, U., Delling, D., Gaertler, M., Görke, R, Hoefer, M., Nikoloski, Z., Wagner, D.: On modularity-np-completeness and beyond. Citeseer (2006)

  6. Canu, M., Lesot, M-J, d’Allonnes, A.R.: Vertex-centred method to detect communities in evolving networks. In: International workshop on complex networks and their applications, pp 275–286. Springer (2016)

  7. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  8. Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Image. Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  9. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. In: 44th Annual IEEE symposium on foundations of computer science, 2003. Proceedings, pp 524–533. IEEE (2003)

  10. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics 22(18), 2283–2290 (2006)

    Article  Google Scholar 

  11. Chen, J., Zaiane, O.R., Goebel, R.: Detecting communities in large networks by iterative local expansion. In: International conference on computational aspects of social networks, 2009. CASON’09, pp 105–112. IEEE (2009)

  12. Clauset, A.: Finding local community structure in networks. Phys. Rev. E 72 (2), 026132 (2005)

    Article  Google Scholar 

  13. Clauset, A., Newman, M.E., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70(6), 066111 (2004)

    Article  Google Scholar 

  14. Coleman, J.S., et al.: Introduction to mathematical sociology. London Free Press, Glencoe (1964)

    Google Scholar 

  15. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen differenzengleichungen der mathematischen physik. Math. Ann. 100(1), 32–74 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  16. Danon, L., Diaz-Guilera, A., Duch, J., Arenas, A.: Comparing community structure identification. J. Stat. Mech:. Theory. Exper. 2005(09), P09008 (2005)

    Article  MATH  Google Scholar 

  17. Diao, P., Guillot, D., Khare, A., Rajaratnam, B.: Differential calculus on graphon space. J. Comb. Theory. Series. A 133, 183–227 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Du, H., Feldman, M.W., Li, S., Jin, X.: An algorithm for detecting community structure of social networks based on prior knowledge and modularity. Complexity 12 (3), 53–60 (2007)

    Article  MathSciNet  Google Scholar 

  19. Falkowski, T.: Community analysis in dynamic social networks. Sierke (2009)

  20. Farhangi, M.M., Frigui, H., Bert, R., Amini, A.A.: Incorporating shape prior into active contours with a sparse linear combination of training shapes: application to corpus callosum segmentation. In: 2016 IEEE 38th Annual international conference of the engineering in medicine and biology society (EMBC), pp 6449–6452. IEEE (2016)

  21. Farhangi, M.M., Frigui, H., Seow, A., Amini, A.A.: 3-d active contour segmentation based on sparse linear combination of training shapes (scots). IEEE Trans. Med. Imaging. 36(11), 2239–2249 (2017)

    Article  Google Scholar 

  22. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)

    Article  MathSciNet  Google Scholar 

  23. Friedman, J., Tillich, J-P: Calculus on graphs. arXiv preprint cs/0408028 (2004)

  24. Golub, G.H., Van Loan, C.F.: Matrix computations, vol 3. JHU Press (2012)

  25. Görke, R, Kluge, R., Schumm, A., Staudt, C., Wagner, D.: An efficient generator for clustered dynamic random networks. In: Design and analysis of algorithms - first mediterranean conference on algorithms, MedAlg 2012, Kibbutz Ein Gedi, Israel, December 3-5, 2012. Proceedings, volume 7659 of lecture notes in computer science (LNCS), pp 219–233. Springer International Publishing, Switzerland (2012)

    Google Scholar 

  26. Hu, Y., Yang, B., Lv, C.: A local dynamic method for tracking communities and their evolution in dynamic networks. Knowl-Based. Syst. 110, 176–190 (2016)

    Article  Google Scholar 

  27. Jeub, L.G., Balachandran, P., Porter, M.A., Mucha, P.J., Mahoney, M.W.: Think locally, act locally: detection of small, medium-sized, and large communities in large networks. Phys. Rev. E 91(1), 012821 (2015)

    Article  Google Scholar 

  28. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32(3), 241–254 (1967)

    Article  MATH  Google Scholar 

  29. Khorasgani, R.R., Chen, J., Zaiane, O.R.: Top leaders community detection approach in information networks. In: 4th SNA-KDD workshop on social network mining and analysis (2010)

  30. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kottak CP: Cultural anthropology: appreciating cultural diversity. McGraw-Hill (2011)

  32. Krishnamurthy, B., Wang, J.: On network-aware clustering of Web clients. ACM SIGCOMM. Comput. Commun. Rev. 30(4), 97–110 (2000)

    Article  Google Scholar 

  33. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative analysis. Phys. Rev. E 80(5), 056117 (2009)

    Article  Google Scholar 

  34. Lancichinetti, A., Fortunato, S., Kertész, J: Detecting the overlapping and hierarchical community structure in complex networks. J. Phys. 11(3), 033015 (2009)

    Google Scholar 

  35. Lawson, C.L., Hanson, R.J.: Solving least squares problems, vol 15. SIAM (1995)

  36. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: Proceedings of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining, pp 177–187. ACM (2005)

  37. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Internet. Math. 6(1), 29–123 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Leskovec, J., Lang, K.J., Mahoney, M.: Empirical comparison of algorithms for network community detection. In: Proceedings of the 19th international conference on World wide Web, pp 631–640. ACM (2010)

  39. Mahoney, M.W., Orecchia, L., Vishnoi, N.K.: A local spectral method for graphs: with applications to improving graph partitions and exploring data graphs locally. J. Mach. Learn. Res. 13(1), 2339–2365 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Mcauley, J., Leskovec, J.: Discovering social circles in ego networks. ACM Trans. Knowl. Discov. Data. (TKDD) 8(1), 4 (2014)

    Google Scholar 

  41. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. Adv. Neural. Inf. Process. Syst. 2, 849–856 (2002)

    Google Scholar 

  42. Nguyen, N.P., Dinh, T.N., Tokala, S., Thai, M.T.: Overlapping communities in dynamic networks: their detection and mobile applications. In: Proceedings of the 17th annual international conference on mobile computing and networking, pp 85–96. ACM (2011)

  43. Palla, G., Derényi, I, Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  44. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101(9), 2658–2663 (2004)

    Article  Google Scholar 

  45. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  46. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. 100(3), 1128–1133 (2003)

    Article  Google Scholar 

  47. Rigi, M.A., Moser, I., Rigi, S., Liu, C.: Re-imaginig the networks: detecting local communities in networks by approximating derivatives in graph space. In: Proceedings of the 2017 IEEE/ACM international conference on advances in social networks analysis and mining 2017, ASONAM ’17, pp 974–981. ACM, New York (2017)

  48. Samie, M.E., Hamzeh, A.: Community detection in dynamic social networks: a local evolutionary approach. J Inf Sci, 0165551516657717 (2016)

  49. Schaeffer, S.E.: Graph clustering. Comput. Sci. Rev. 1(1), 27–64 (2007)

    Article  MATH  Google Scholar 

  50. Serrano, M., Boguñá, M, Pastor-Satorras, R., Vespignani, A.: Large scale structure and dynamics of complex networks: from information technology to finance and natural sciences (2007)

  51. Shang, J., Liu, L., Li, X., Xie, F., Wu, C.: Targeted revision: a learning-based approach for incremental community detection in dynamic networks. Physica. A:. Stat. Mech. Appl. 443(Supplement C), 70–85 (2016)

    Article  Google Scholar 

  52. Solomon, J.: Pde approaches to graph analysis. arXiv:1505.00185 (2015)

  53. Spiliopoulou, M., Ntoutsi, I., Theodoridis, Y., Schult, R.: Monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, pp 706–711. ACM (2006)

  54. Sun, J., Faloutsos, C., Papadimitriou, S., Yu, P.S.: Graphscope: parameter-free mining of large time-evolving graphs. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, pp 687–696. ACM (2007)

  55. Takaffoli, M., Fagnan, J., Sangi, F., Zaïane, OR: Tracking changes in dynamic information networks. In: 2011 International conference on computational aspects of social networks (CASoN), pp 94–101. IEEE (2011)

  56. Takaffoli, M., Rabbany, R., Zaïane, OR: Incremental local community identification in dynamic social networks. In: Proceedings of the 2013 IEEE/ACM international conference on advances in social networks analysis and mining, pp 90–94. ACM (2013)

  57. Tong, H., Papadimitriou, S., Sun, J., Yu, P.S., Faloutsos, C.: Colibri: fast mining of large static and dynamic graphs. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 686–694. ACM (2008)

  58. Toyoda, M., Kitsuregawa, M.: Creating a Web community chart for navigating related communities. In: Proceedings of the 12th ACM conference on hypertext and hypermedia, HYPERTEXT ’01, pp 103–112. ACM, New York (2001)

  59. Traud, A.L., Mucha, P.J., Porter, M.A.: Social structure of facebook networks. Physica. A:. Stat. Mech. Appl. 391(16), 4165–4180 (2012)

    Article  Google Scholar 

  60. Xu, T., Zhang, Z., Yu, P.S., Long, B.: Generative models for evolutionary clustering. ACM Trans. Knowl. Discov. Data. (TKDD) 6(2), 7 (2012)

    Google Scholar 

  61. Yang, T., Chi, Y., Zhu, S., Gong, Y., Jin, R.: Detecting communities and their evolutions in dynamic social networks—a bayesian approach. Mach. Learn. 82(2), 157–189 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  62. Yoshida, T.: Toward finding hidden communities based on user profile. J. Intell. Inf. Syst. 40(2), 189–209 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amin Rigi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Error analysis

Suppose F and G are two functions defined with \(F^{\prime }(v_{c})\) and \(G^{\prime }(v_{c})\) as the first order derivative in node C. Then:

$$ \begin{array}{@{}rcl@{}} \text{Addition rule: }(F \pm G)^{\prime}(v_{c})=F^{\prime}(v_{c}) \pm G^{\prime}(v_{c}) \end{array} $$
(50)
$$ \begin{array}{@{}rcl@{}} \text{Multiplication rule: }[F(v_{c}).G(v_{c})]^{\prime}=F^{\prime}(v_{c}).G(v_{c})+F(v_{c}).G^{\prime}(v_{c}) \end{array} $$
(51)
$$ \begin{array}{@{}rcl@{}} \text{Division rule: }[\frac{F}{G}(v_{c})]^{\prime}=\frac{F^{\prime}(v_{c}).G(v_{c})-F(v_{c}).G^{\prime}(v_{c})}{[G(v).G(v_{c})]^{2}} \end{array} $$
(52)

Proof: Suppose D is the derivative matrix in (30). We define \(D_{1}^{(-1)}\) as the first row of matrix D(− 1), and H = F + G:

$$DH^{(n)} = H(v)-H(v_{c}); \text{where } H^{(n)} \text{is the vector of derivatives}$$
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[H(v)-H(v_{c})] \end{array} $$
(53)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[F(v)+G(v)-F(v_{c})-G(v_{c})] \end{array} $$
(54)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[F(v)-F(v_{c})]+D_{1}^{(-1)}[G(v)-G(v_{c})]=F^{\prime}(v_{c})+G^{\prime}(v_{c}) \end{array} $$
(55)

Differentation rule’s proof is similar to addition.

Multiplication rule: We define H = F.G where . is the inner product operator.

$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[H(v)-H(v_{c})] \end{array} $$
(56)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[F(v).G(v)-F(v_{c}).G(v_{c})] \end{array} $$
(57)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[F(v).G(v)-F(v_{c}).G(v)+F(v_{c}).G(v)-F(v_{c}).G(v_{c})] \end{array} $$
(58)
$$ \begin{array}{@{}rcl@{}} D_{1}^{(-1)}[G(v).(F(v)-F(v_{c}))]+D_{1}^{(-1)}[F(v_{c}).(G(v)-G(v_{c}))] \end{array} $$
(59)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=F^{\prime}(v_{c}).G(v)+F(v_{c}).G^{\prime}(v_{c}) \end{array} $$
(60)

Division rule:

$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[\frac{F(v)}{G(v)}-\frac{F(v_{c})}{G(v_{c})}] \end{array} $$
(61)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=D_{1}^{(-1)}[\frac{F(v).G(v_{c})-F(v_{c}).G(v_{c})+F(v_{c}).G(v_{c})-F(v_{c}).G(v)}{G(v).G(v_{c})}] \end{array} $$
(62)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=\frac{F^{\prime}(v_{c}).G(v_{c})}{G(v).G(v_{c})}-\frac{F(v_{c}).G^{\prime}(v_{c})}{G(v).G(v_{c})} \end{array} $$
(63)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=\frac{F^{\prime}(v_{c}).G(v_{c})-F(v_{c}).G^{\prime}(v_{c})}{G(v).G(v_{c})} \end{array} $$
(64)

Depending on the neighbors of node C, the term G(v), appeared in the right hand side of multiplication and division rules, can be approximated differently. For a simple case where node C is connected to just one node V, multiplication is rewritten:

$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=F^{\prime}(v_{c}).[G(v_{c})+LG^{\prime}(v_{c})]+F(v_{c}).G^{\prime}(v_{c}) \end{array} $$
(65)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=F^{\prime}(v_{c}).G(v_{c})+F(v_{c}).G^{\prime}(v_{c})+LF^{\prime}(v_{c}).G^{\prime}(v_{c}) \end{array} $$
(66)

and division rule is simplified:

$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=\frac{F^{\prime}(v_{c}).G(v_{c})-F(v_{c}).G^{\prime}(v_{c})}{[G(v_{c})+LG^{\prime}(v_{c})].G(v_{c})} \end{array} $$
(67)
$$ \begin{array}{@{}rcl@{}} H^{\prime}(v_{c})=\frac{F^{\prime}(v_{c}).G(v_{c})-F(v_{c}).G^{\prime}(v_{c})}{G^{2}(v_{c})+L.G(v_{c}).G^{\prime}(v_{c})} \end{array} $$
(68)

Appendix B: List of symbols

C:

community

t:

time step

∇:

differential operator

κ:

curvature

∂:

partial derivative

n :

normal direction

V:

set of graph nodes

G:

graph

χ:

graph shape

E:

set of graph nodes

ν:

set of shape nodes

ξ:

set of shape edges

O:

truncation error

F:

similarity function

d:

node difference

e:

approximation error

N:

set of a node’s neighbours

s:

velocity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigi, M.A., Moser, I., Farhangi, M.M. et al. Finding and tracking local communities by approximating derivatives in networks. World Wide Web 23, 1519–1551 (2020). https://doi.org/10.1007/s11280-019-00737-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00737-2

Keywords

Navigation