Skip to main content
Log in

Spreading of social contagions without key players

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

Contagion models have been used to study the spread of social behavior among agents of a networked population. Examples include information diffusion, social influence, and participation in collective action (e.g., protests). Key players, which are typically agents characterized by structural properties of the underlying network (e.g., high degree, high core number or high centrality) are considered important for spreading social contagions. In this paper, we ask whether contagions can propagate through a population that is devoid of key players. We justify the use of Erdős-Rényi random graphs as a representation of unstructured populations that lack key players, and investigate whether complex contagions—those requiring reinforcement—can spread on them. We demonstrate that two game-theoretic contagion models that utilize common knowledge for collective action can readily spread such contagions, thus differing significantly from classic complex contagion models. We compare contagion dynamics results on unstructured networks to those on more typically-studied, structured social networks to understand the role of network structure. We test the classic complex contagion and the two game-theoretic models with a total of 18 networks that range over five orders of magnitude in size and have different structural properties. The two common knowledge models are also contrasted to understand the effects of different modeling assumptions on dynamics. We show that under a wide range of conditions, these two models produce markedly different results. Finally, we demonstrate that the disparity between classic complex contagion and common knowledge models persists as network size increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Abdelhamid, S., Kuhlman, C.J., Marathe, M.V., Ravi, S.S., Reid, K.: Agent-Based Modeling and Simulation of Depression and Its Impact on Students? Success and Academic Retention. In: American Society for Engineering Education (ASEE) (2016)

  2. Al-garadi, M.A., Varathan, K.D., Ravana, S.D.: Identification of influential spreaders in online social networks using interaction weighted k-core decomposition method. Physica A: Statistical Mechanics and its Applications 468, 278–288 (2017)

    Article  Google Scholar 

  3. Albert, R., Jeong, H., Barabasi, A.: Error and attack tolerance of complex networks. Nature 406, 378–381 (2000)

    Article  Google Scholar 

  4. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the generation of all maximal bicliques. Discret. Appl. Math. (DAM) 145, 11–21 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arnaboldi, V., Passarella, A., Tesconi, M., Gazzè, D.: Towards a characterization of Ego- centric networks in online social networks. In: Proceedings of the 2011th Confederated International Conference on the Move to Meaningful Internet Systems, pp 524–533 (2011)

  6. Backstrom, L., Boldi, P., Rosa, M., Ugander, J., Vigna, S.: Four degrees of separation. In: Proceedings of the 4th Annual ACM Web Science Conference (WebSci), pp 33–42 (2012)

  7. Bader, D.A., Kintali, S., Madduri, K., Mihail, M.: Approximating betweenness centrality. In: WAW, pp 124–137 (2007)

  8. Bakshy, E., Messing, S., Adamic, L.A.: Exposure to ideologically diverse news and opinion on Facebook. Science 348, 1130–1132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakshy, E., Rosenn, I., Marlow, C., Adamic, L.: The role of social networks in information diffusion. In: Proceedings of the 21st International Conference on World Wide Web, pp 519–528 (2012)

  10. Barabasi, A., Albert, R.: Emergence of scaling in random networks. Nature 286, 509–512 (1999)

    MathSciNet  MATH  Google Scholar 

  11. Barash, V., Cameron, C., Macy, M.: Critical phenomena in complex contagions. Soc. Networks 34 (2012)

  12. Bonacich, P.: Factoring and weighting approaches to status scores and clique indentification. J. Math. Sociol. 2, 113–120 (1972)

    Article  Google Scholar 

  13. Borgatti, S.P.: Identifying sets of key players in a social network. Comput Math Organiz Theor 12, 21–34 (2006)

    Article  MATH  Google Scholar 

  14. Budak, C., Agrawal, D., Abbadi, A.E.: Limiting the spread of misinformation in social Net- works. In: Proceedings of the 20th International Conference of World Wide Web Conference (WWW) (2011)

  15. Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Soc. 113(3), 702–734 (2007)

    Article  Google Scholar 

  16. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: ACM International Conference on Data Mining and Knowledge Discovery (KDD), pp 1029–1038 (2010a)

  17. Chen, W., Yuan, Y., Zhang, L.: Scalable influence maximization in social networks under the linear threshold model. In: Proceedings of the 2010 IEEE International Conference on Data Mining (ICDM). ISBN 978-0-7695-4256-0, pp 88–97 (2010b)

  18. Cheng, J., Adamic, L.A., Dow, P.A., Kleinberg, J., Leskovec, J.: Can cascades be predicted?. In: Proceedings of the 23rd International Conference on World Wide Web (WWW) (2014)

  19. Chwe, M.S.-Y.: Culture, circles, and commercials publicity, common knowledge, and social coordination. Ration. Soc. 10(1), 47–75 (1998)

    Article  Google Scholar 

  20. Chwe, M. S. -Y.: Structure and strategy in collective action. Am. J. Sociol. (AJS) 105, 128–156 (1999)

    Article  Google Scholar 

  21. Chwe, M. S. -Y.: Communication and coordination in social networks. Rev. Econ. Stud. 67, 1–16 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Clifford, P, Sudbury, A: A model for spatial conflict. Biometrika 60, 581–588 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. de Arruda, GF, Barbieri, AL, Rodriguez, PM, Rodrigues, FA, Moreno, Y, Costa, L. F.: Role of centrality for the identification of influential spreaders in complex networks, vol. 90, p 032812 (2014), https://doi.org/10.1103/PhysRevE.90.032812. http://link.aps.org/doi/10.1103/PhysRevE.90.032812

  24. Devineni, P., Koutra, D., Faloutsos, M., Faloutsos, C.: If walls could talk: patterns and anomalies in facebook wallposts. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp 367–374 (2015)

  25. Dodds, P.S., Watts, D.J.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)

    Article  MathSciNet  Google Scholar 

  26. Dow, P.A., Adamic, L.A., Friggeri, A.: The anatomy of large facebook cascades. In: International AAAI Conference on Weblogs and Social Media (ICWSM), pp 145–154 (2013)

  27. Fowler, J., Mocanu, D., Steinert-Threlkeld, Z., Vespignani, A.: Common Knowledge and Protest (2014)

  28. Freeman, LC: A set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1976)

    Article  Google Scholar 

  29. Freeman, LC: Centrality in social networks: conceptual clarification. Soc. Networks 1, 215–239 (1978)

    Article  Google Scholar 

  30. Friggeri, A, Adamic, LA, Eckles, D, Cheng, J: Rumor cascades. In: International AAAI Conference on Weblogs and Social Media (ICWSM) (2014)

  31. Gjoka, M, Kurant, M, Butts, CT, Mkaropoulou, A: Walking in facebook: a case study of unbiased sampling of OSNs. In: Proceedings of the 29th Conference on Information Communications (INFOCOM), pp 2498–2506 (2010)

  32. Goldenberg, J., Libai, B., Muller, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)

    Article  Google Scholar 

  33. Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The dynamics of protest recruitment through an online network. Sci. Rep. 1–7 (2011)

  34. Gosling, S.D., Gaddis, S., Vazire, S.: Personality impressions based on facebook profiles. In: International AAAI Conference on Weblogs and Social Media (ICWSM) (2007)

  35. Gould, R: Collective action and network structure. Am. Sociol. Rev. 58, 182–196 (1993)

    Article  Google Scholar 

  36. Granovetter, M: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)

    Article  Google Scholar 

  37. Gunasekara, R.C., Mehrotra, K., Mohan, C.K.: Multi-objective optimization to identify key players in social networks. In: Proceedings of the 2015 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), pp 443–450 (2014)

  38. Gunasekara, R.C., Mehrotra, K., Mohan, C.K.: Multi-objective optimization to identify key players in large social networks. Soc. Netw. Anal. Min. 5(1), 21 (2015)

    Article  Google Scholar 

  39. Gupta, S., Yan, X., Lerman, K.: Structural properties of ego networks. In: SBP, pp 55–64 (2015)

  40. Hethcote, H: The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Hodas, NO, Lerman, K: The simple rules of social contagion. Sci. Rep. 4 (2014)

  42. Huang, T. -K., Rahman, MS, Madhyastha, HV, Faloutsos, M, Ribeiro, B: An analysis of socware cascades in online social networks. In: Proceedings of the 22nd International Conference on World Wide Web, pp 619–630 (2013)

  43. Huynh, H.N., Legara, E.F., Monterola, C.: A dynamical model of twitter activity profiles. In: Hypertext, pp 49–57 (2015)

  44. Janssen, RHP, Monsuur, H: Identifying stable network structures and sets of key players using a w-covering perspective. Math. Soc. Sci. 66(3), 245–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Jin, F., Khandpur, R.P., Self, N., Dougherty, E., Guo, S., Chen, F., Prakash, B.A., Ra- makrishnan, N.: Modeling mass protest adoption in social network communities using geometric brownian motion. In: Proceedings of ACM International Conference on Data Mining and Knowledge Discovery (KDD) (2014)

  46. Kawachi, K., Seki, M., Yoshida, H., Otake, Y., Warashina, K., Ueda, H.: A rumor transmission model with various contact interactions. J. Theor. Biol. 253, 55–60 (2008)

    Article  MathSciNet  Google Scholar 

  47. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of ACM International Conference on Data Mining and Knowledge Discovery (KDD), pp 137–146 (2003)

  48. Kitsak, M., Gallos, L.K., Havlin, S., Liljeros, F., Muchnik, L., Stanley, H.E., Makse, H.A.: Identification of influential spreaders in complex networks. Nat. Phys. 6, 888–893 (2010)

    Article  Google Scholar 

  49. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46, 604–632 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. Korkmaz, G., Kuhlman, C.J., Vega-Redondo, F.: Can Social Contagion Spread Without Key Players?. In: The 3rd International Conference on Behavioral, Economic, and SocioCultural Computing (BESC), pp 1–6 (2016)

  51. Korkmaz, G., Kuhlman, C.J., Marathe, A., Marathe, M.V., Vega-Redondo, F.: Collective action through common knowledge using a facebook model. In: Thirteen International Conference on Autonomous Agents and Multiagent Systems (AAMAS) (2014)

  52. Kosinski, M., Stillwell, D., Graepel, T.: Private traits and attributes are predictable from digital records of human behavior. Proc. Natl. Acad. Sci. (PNAS) 110 (15), 5802–5805 (2013)

    Article  Google Scholar 

  53. Kramer, A.DI., Guillory, J.E., Hancock, J.T.: Experimental evidence of massive-scale emotional contagion through social networks. Proc. Natl. Acad. Sci. (PNAS) 111(24), 8788–8790 (2014)

    Article  Google Scholar 

  54. Kuhlman, C.J., Kumar, V.SA., Ravi, S.S.: Controlling opinion propagation in online networks. J. Comput. Networks 57, 2121–2132 (2013)

    Article  Google Scholar 

  55. Kuhlman, CJ, Kumar, V.S.A., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Inhibiting diffusion of complex contagions in social networks: Theoretical and experimental results. Journal of Data Mining and Knowledge Discovery (DMKD) (2015)

  56. Kyle, TA, DeScioli, P, Haque, OS, Pinker, S: The psychology of coordination and common knowledge. J. Pers. Soc. Psychol. 107, 657–676 (2014)

    Article  Google Scholar 

  57. Leskovec, J: SNAP Datasets, http://snap.stanford.edu/data (2016)

  58. Lewis, R: Convention: a philosophical study. Harvard U. Press (1969)

  59. Lloyd-Smith, JO, George, D, Pepin4, KM, Pitzer, VE, Pulliam, JRC, Dobson, AP, Hudson, PJ, Grenfell, BT: Epidemic dynamics at the human-animal interface. Science 26, 1362–1367 (2009)

  60. Lum, K., Swarup, S., Eubank, S., Hawdon, J.: The contagious nature of imprisonment: an agent-based model to explain racial disparities in incarceration rates. J. R. Soc. Interface. 11(98) (2014)

  61. Macy, M: Chains of cooperation: Threshold effects in collective action. Am. Sociol. Rev. 56(6), 730–747 (1991)

    Article  Google Scholar 

  62. McAdam, D: Recruitment to high-risk activism–the case of freedom summer. Am. J. Sports Med. 92, 64–90 (1986)

    Google Scholar 

  63. Mobilia, M: Does a single zealot affect an infinite group of voters? Phys. Rev. Lett. 91(2), 028701–10287014 (2003)

    Article  Google Scholar 

  64. Mobilia, M, Petersen, A, Redner, S: On the role of zealotry in the voter model. J. Statistical Mechanics: Theory and Experiment P08029, 1–17 (2007a)

  65. Mobilia, M, Petersen, A, Redner, S: On the role of zealotry in the voter model, vol. 2007 (2007b)

  66. Morone, F, Makse, HA: Influence maximization in complex networks through optimal percolation. Nature 524, 65–68 (2015)

    Article  Google Scholar 

  67. Myers, S.A., Leskovec, J.: Clash of the contagions: cooperation and competition in information diffusion. In: IEEE 12th International Conference on Data Mining (ICDM), pp 539–548 (2012)

  68. Nsoesie, EO, Beckman, RJ, Marathe, MV: Sensitivity analysis of an individual-based model for simulation of influenza epidemics. PLos ONE 7, e45414-1–e45414-16 (2012)

    Article  Google Scholar 

  69. Oliver, P, Marwell, G: The paradox of group size in collective action: a theory of the critical mass. ii. Am. Sociol. Rev. 53(1), 1–8 (1988)

    Article  Google Scholar 

  70. Oliver, P, Marwell, G, Teixeira, R: A theory of the critical mass. i. interdependence, group heterogeneity, and the production of collective action. Am. J. Sociol. 91(3), 522–556 (1985)

    Article  Google Scholar 

  71. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank Citation Ranking: Bringing Order to the Web., Technical Report 1999-66, Stanford InfoLab. Previous number = SIDL-WP-1999-0120 (1999). http://ilpubs.stanford.edu:8090/422/

  72. Papachristos, AV, Wildeman, C, Roberto, E: Tragic, but not random: the social contagion of nonfatal gunshot injuries. Soc. Sci. Med. 125, 139–150 (2015)

    Article  Google Scholar 

  73. Prakash, B.A., Chakrabarti, D., Faloutsos, M., Valler, N., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary graphs. In: Proceedings of the 11th IEEE Conference on Data Mining (ICDM), pp 537–546 (2011a)

  74. Prakash, B.A., Chakrabarti, D., Faloutsos, M., Valler, N., Faloutsos, C.: Threshold conditions for arbitrary cascade models on arbitrary networks. In: Proceedings of the 2011 IEEE 11th International Conference on Data Mining, pp 537–546 (2011b)

  75. Prakash, B.A., Beutel, A., Rosenfeld, R., Faloutsos, C.: Winner takes all: competing viruses or ideas on fair-play networks. In: Proceedings of the 21st International World Wide Web Conference (WWW) (2012)

  76. Romero, D., Meeder, B., Kleinberg, J.: Differences in the Mechanics of Information Diffusion. In: Proceedings of the 20th International Conference on World Wide Web (2011)

  77. Saha, S., Adiga, A., Prakash, B.A., Vullikanti, A.KS.: Approximation algorithms for reducing the spectral radius to control epidemic spread. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 568–576. Vancouver (2015)

  78. Schelling, T: Micromotives and macrobehavior. W. W. Norton and company (1978)

  79. Schneider, JA, Zhou, AN, Laumann, EO: A new HIV prevention network approach: sociometric peer change agent selection. Soc. Sci. Med. 125, 192–202 (2015)

    Article  Google Scholar 

  80. Schoenebeck, G.: Potential networks, contagious communities, and understanding social network structure. In: Proceedings of the 22nd International Conference on World Wide Web, pp 367–374 (2013)

  81. Seidman, S.B.: Network Structure and Minimum Degree. Soc. Networks 5, 269–287 (1983)

    Article  MathSciNet  Google Scholar 

  82. Siegel, D.: Social networks and collective action. Am. J. Pol. Sc. 53, 122–138 (2009)

    Article  Google Scholar 

  83. Sun, E., Rosenn, I.,Marlow, C.A., Lento, T.M.: Gesundheit! modeling contagion through facebook news feed. In: International AAAI Conference on Weblogs and Social Media (ICWSM) (2009)

  84. Takaguchi, T., Masuda, N., Holme, P.: Bursty communication patterns facilitate spreading in a threshold-based epidemic dynamics. Plos One 8, e68629-1–e68629-5 (2013)

    Article  Google Scholar 

  85. Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the facebook social graph. In: Computing Research Repository (CoRR) (2011)

  86. Viswanath, B., Mislove, A., Cha, M., Gummadi, K.P.: On the evolution of user interaction in facebook. In: Proceedings of the 2nd ACM Workshop on Online Social Networks (WOSN), pp 37–42 (2009)

  87. Wang, S.,Wang, F., Chen, Y., Liu, C., Li, Z., Zhang, X.: Exploiting social circle broadness for influential spreaders identification in social networks. World Wide Web 18(3), 681–705 (2015)

    Article  Google Scholar 

  88. Wang, X., Zhang, X., Zhao, C., Yi, D.: Maximizing the spread of influence via generalized degree discount. PLos ONE 11, e0164393-1–e0164393–16 (2016)

    Article  Google Scholar 

  89. Wang, Y., Chakrabarti, D., Wang, C., Faloutsos, C.: Epidemic spreading in real networks: an eigenvalue viewpoint. In: Proceedings of the 22nd International Symposium on Reliable Distributed Systems (SRDS), pp 25–34 (2003)

  90. Watts, D: A simple model of global cascades on random networks. PNAS 99(9), 5766–5771 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  91. Zhou, J., Liu, Z., Li, B.: Influence of network structure on rumor propagation. Phys. Lett. A 368, 458–463 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for their feedback and suggestions. We thank our external collaborators and members of the Network Dynamics and Simulation Science Laboratory (NDSSL) and the Social and Decision Analytics Laboratory (SDAL) for their suggestions and comments. This material is based upon work supported by the Air Force Office of Scientific Research under award number FA9550-17-1-0378, by NSF DIBBS Grant ACI-1443054, NSF BIG DATA Grant IIS-1633028, and Defense Threat Reduction Agency Comprehensive National Incident Management System Contract HDTRA1-11-D-0016-0001. Any opinions, finding, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Air Force.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gizem Korkmaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korkmaz, G., Kuhlman, C.J., Ravi, S.S. et al. Spreading of social contagions without key players. World Wide Web 21, 1187–1221 (2018). https://doi.org/10.1007/s11280-017-0500-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-017-0500-y

Keywords

Navigation