Skip to main content
Log in

Energy Efficient Cluster-Based Routing Protocol for WSN Using Nature Inspired Algorithm

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

WSN consist of tiny sensors that are distributed over the entire network and have the capability of sensing the data, processing it, and conveying it from one node to another. The purpose of the study is to minimize the power utilization per round and elevate the network lifespan. In the present case, nature-inspired mechanisms are used to minimize the power utilization of the network. In the proposed study, the Butterfly Optimization Algorithm (BOA) is used to choose the optimal quantity of cluster heads from the dense nodes (available nodes). The parameters to be considered for the choice of the cluster head are: the remaining power of the node; distance from the other nodes in the network; distance from the base station; node centrality; and node degree. The particle swarm optimization (PSO) is used to form the cluster head by choosing certain parameters, such as distance from the cluster head and the BS. The path is chosen by means of the Ant Colony Optimization (ACO) Mechanism. The route is optimized by the distance, node degree, and the chosen remaining power. The inclusive performance of the projected protocol is measured in terms of stability period, quantity of active nodes, data acknowledged by the base station, and overall power utilization of the network. The results of the put redirect methodology are correlated with the extant mechanisms such as LEACH, DEEC, DDEEC, and EDEEC (Khan et al. in World Appl Sci J, 2013; Arora and Singh in Soft Comput 23:715–734, 2019; Saini and Sharma in 2010 First international conference on parallel, distributed and grid computing (PDGC 2010), 2010; Elbhiri et al. in 2010 5th International symposium on I/V communications and mobile network, 2010) and correlated with the swarm mechanisms such as CRHS, BERA, FUCHAR, ALOC, CPSO, and FLION. This review will help investigators discover the applications in this arena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

Enquiries about data availability should be directed to the authors.

Abbreviations

WSN:

Wireless sensor network

BOA:

Butterfly optimization algorithm

ACO:

Ant colony optimization

PSO:

Particle swarm optimization

BS:

Base station

CH:

Cluster head

LEACH:

Low energy adaptive clustering hierarchy protocol

DEEC:

Distributed energy efficient clustering

DDEEC:

Developed distributed energy efficient clustering

SEP:

Stable election protocol

EDEEC:

Enhanced distributed energy-efficient clustering

CRHS:

Clustering and routing harmony search

BERA:

Biogeography-based energy saving routing architecture

ALOC:

Ant lion optimization for clustering

CPSO:

Cellular automata (CA) and particle swarm optimization (PSO)

FLION:

Fractional lion (FLION) clustering algorithm

WECRR:

Weighted power-efficient clustering with robust routing

WPO-EECRP:

Energy-efficient clustering routing protocol based on weighting and parameter optimization

References

  1. Sohrabi, K., Gao, J., Ailawadhi, V., & Pottie, G. J. (2000). Protocols for self-organization of a wireless sensor network. IEEE Personal Communication, 7(5), 16–27.

    Article  Google Scholar 

  2. Singh, A., Kotiyal, V., Sharma, S., Nagar, J., & Lee, C. C. (2020). A machine learning approach to predict the average localisation error with applications to wireless sensor networks. IEEE Access, 8, 208253–208263.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.

    Article  Google Scholar 

  4. Borges, L., Velez, F. J., & Lebres, A. S. (2014). Survey on the characterization and classification of wireless sensor network applications. IEEE Communications Surveys & Tutorials, 16(4), 1860–1890.

    Article  Google Scholar 

  5. Lu, S., Huang, X., Cui, L., Zhao, Z., & Li, D. (2009). Design and implementation of an asic-based sensor device for wsn applications. IEEE Transactions on Consumer Electronics, 55(4), 1959–1967.

    Article  Google Scholar 

  6. Sharma, S., Singh, J., Kumar, R., Singh, A. (2017). Throughput-save ratio optimiza- tion in wireless powered communication systems. In 2017 International Conference on Information, Communication, Instrumentation and Control (ICICIC), (pp. 1–6).

  7. Kumar, A., Singh, A. (2018). Throughput optimization for wireless information and power transfer in communication network. In 2018 Conference on Signal Processing and Communication Engineering Systems (Spaces), (pp. 1–5).

  8. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  9. Imran, M., Hasbullah, H. B., & Said, A. M. (2012). Personality wireless sensor networks (PWSNs). arXiv preprint arXiv:1212.5543.

  10. Sharma, S., Kumar, R., Singh, A., & Singh, J. (2020). Wireless information and power transfer using single and multiple path relays. International Journal of Communication Systems, 33(14), e4464.

    Article  Google Scholar 

  11. Daji, H., Jinping, Z., & Jilan, S. (2003). Practical implementation of Hilbert-Huang transform mechanism. Acta Oceanologica Sinica, 22(1), 1–14.

    Google Scholar 

  12. Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifespan through power aware organization. Wireless Networks, 11, 333–340. https://doi.org/10.1007/s11276-005-6615-6

    Article  Google Scholar 

  13. Huang, R., Chen, Z., Xu, G. (2010). International Conference on Communications, Circuits and Systems (ICCCAS), IEEE (2010), pp. 103–107.

  14. Liang, Y., Yu, H. (2005) Power adaptive cluster-head selection for wireless sensor networks. In Sixth International Conference on Parallel and Distributed Computing Applications and Technologies (pdcat’05), (pp. 634–638).

  15. Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifespan through power aware organization. Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  16. Wang, X., Xing, G., Zhang, Y., Lu, C., Pless, R., Gill, C. (2003). Integrated scope and connectivity configuration in wireless sensor networks. In Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, Sensys ’03, ACM, New York, NY, USA, (pp. 28–39).

  17. Tsai, C.-W., Hong, T.-P., & Shiu, G.-N. (2016). metaheuristics for the lifespan of wsn: A review. IEEE Sensors. J., 16(9), 2812–2831.

    Article  Google Scholar 

  18. Nanda, S. J., & Panda, G. (2014). a survey on nature inspired metaheuristic mechanisms for partitional clustering. Swarm and Evolutionary Computation, 16, 1–18.

    Article  Google Scholar 

  19. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., & Azam, M. (2015). Wireless sensor network optimization: Multi-purpose paradigm. Sensors, 15(7), 17572–17620.

    Article  Google Scholar 

  20. Demigha, O., Hidouci, W.-K., & Ahmed, T. (2012). On power efficiency in collaborative target tracking in wireless sensor network: A review. IEEE Communications Surveys & Tutorials, 15(3), 1210–1222.

    Article  Google Scholar 

  21. Kulkarni, R. V., Forster, A., & Venayagamoorthy, G. K. (2010). Computational intelligence in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 13(1), 68–96.

    Article  Google Scholar 

  22. Tsai, C.-W., Tsai, P.-W., Pan, J.-S., & Chao, H.-C. (2015). Metaheuristics for the deployment problem of wsn: A review. Microprocessors and Microsystems, 39(8), 1305–1317.

    Article  Google Scholar 

  23. Molina, G., Alba, E., & Talbi, E. G. (2008). Optimal sensor network layout using multi-objective metaheuristics. Journal of Universal Computer Science, 14(15), 2549–2565.

    Google Scholar 

  24. Al-Mousawi, A. J. (2020). Evolutionary intelligence in wireless sensor network: routing, clustering, localization and coverage. Wireless Networks, 26(8), 5595–5621.

    Article  Google Scholar 

  25. Grefenstette, J. (1986). Optimization of control parameters for genetic mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, 16(1), 122–128.

    Article  Google Scholar 

  26. Liu, X. (2017). Routing protocols based on ant colony optimization in wireless sensor networks: a survey. IEEE Access, 5, 26303–26317.

    Article  Google Scholar 

  27. Mehrotra, A., Singh, K. K., & Khandelwal, P. (2014). An unsupervised change detection technique based on Ant colony Optimization. In 2014 International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 408-411). IEEE.

  28. Dawood, M. S., Benazer, S. S., Saravanan, S. V., & Karthik, V. (2021). Energy efficient distance based clustering protocol for heterogeneous wireless sensor networks. Materials Today: Proceedings, 45, 2599–2602. https://doi.org/10.1016/j.matpr.2020.11.339

    Article  Google Scholar 

  29. Mehta, D., & Saxena, S. (2020). MCH-EOR: Multi-objective cluster head based energy-aware optimized routing algorithm in wireless sensor networks. Sustainable Computing: Informatics and Systems, 28, 100406. https://doi.org/10.1016/j.suscom.2020.100406

    Article  Google Scholar 

  30. Hussien, A. G., Amin, M., Wang, M., Liang, G., Alsanad, A., Gumaei, A., & Chen, H. (2020). Crow search algorithm: Theory, recent advances, and applications. IEEE Access, 8, 173548–173565. https://doi.org/10.1109/access.2020.3024108

    Article  Google Scholar 

  31. Arjunan, S., & Sujatha, P. (2018). Lifetime maximization of wireless sensor network using fuzzy based unequal clustering and ACO based routing hybrid protocol. Applied Intelligence, 48, 2229–2246.

    Article  Google Scholar 

  32. Kaushik, A., Indu, S., & Gupta, D. (2019). A grey wolf optimization approach for improving the performance of wireless sensor networks. Wireless Personal Communications, 106, 1429–1449. https://doi.org/10.1007/s11277-019-06223-2

    Article  Google Scholar 

  33. Xiuwu, Y., Qin, L., Yong, L., Mufang, H., Ke, Z., & Renrong, X. (2019). Uneven clustering routing algorithm based on glowworm swarm optimization. Ad Hoc Networks, 93, 101923. https://doi.org/10.1016/j.adhoc.2019.101923

    Article  Google Scholar 

  34. Mahesh, N., & Vijayachitra, S. (2019). DECSA: Hybrid dolphin echolocation and crow search optimization for cluster-based energy-aware routing in WSN. Neural Computing and Applications, 31, 47–62. https://doi.org/10.1007/s00521-018-3637-4

    Article  Google Scholar 

  35. Lin, Y., Zhang, J., Chung, H. S. H., Ip, W. H., Li, Y., & Shi, Y. H. (2011). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 42(3), 408–420.

    Article  Google Scholar 

  36. Cui, Z., Fei, X. U. E., Zhang, S., Cai, X., Cao, Y., Zhang, W., & Chen, J. (2020). A hybrid blockchain-based identity authentication scheme for multi-wsn. IEEE Transactions on Services Computing, 13(2), 241–251. https://doi.org/10.1109/tsc.2020.2964537

    Article  Google Scholar 

  37. Lazrag, H., Chehri, A., Saadane, R., & Rahmani, M. D. (2021). Efficient and secure routing protocol based on blockchain approach for wireless sensor networks. Concurrency and Computation: Practice and Experience, 33(22), e6144. https://doi.org/10.1002/cpe.6144

    Article  Google Scholar 

  38. Wang, Z. X., Zhang, M., Gao, X., Wang, W., & Li, X. (2019). A clustering WSN routing protocol based on node energy and multipath. Cluster Computing, 22, 5811–5823.

    Article  Google Scholar 

  39. Han, G., & Zhang, L. (2018). WPO-EECRP: energy-efficient clustering routing protocol based on weighting and parameter optimization in WSN. Wireless Personal Communications, 98, 1171–1205.

    Article  Google Scholar 

  40. Haseeb, K., Bakar, K. A., Abdullah, A. H., & Darwish, T. (2017). Adaptive energy aware cluster-based routing protocol for wireless sensor networks. Wireless Networks, 23, 1953–1966.

    Article  Google Scholar 

  41. She, W., Liu, Q., Tian, Z., Chen, J. S., Wang, B., & Liu, W. (2019). Blockchain trust model for malicious node detection in wireless sensor networks. IEEE Access, 7, 38947–38956. https://doi.org/10.1109/access.2019.2902811

    Article  Google Scholar 

  42. Liu, Y., Dong, M., Ota, K., & Liu, A. (2016). Activetrust: Secure and trustable routing in wireless sensor networks. IEEE Transactions on Information Forensics and Security, 11(9), 2013–2027. https://doi.org/10.1109/tifs.2016.2570740

    Article  Google Scholar 

  43. Maheshwari, P., Sharma, A. K., & Verma, K. (2021). Energy efficient cluster based routing protocol for WSN using butterfly optimization algorithm and ant colony optimization. Ad Hoc Networks, 110, 102317.

    Article  Google Scholar 

  44. Xiao, W., Wu, X., Ma, X., & Lu, Q. (2013). The optimization algorithm of wireless sensor network node based on improved ant colony. Sensors & Transducers, 155(8), 54.

    Google Scholar 

  45. Yazdani, M., & Jolai, F. (2016). Lion optimization algorithm (LOA): A nature-inspired metaheuristic algorithm. Journal of computational design and engineering, 3(1), 24–36.

    Article  Google Scholar 

  46. Han, G., Xu, H., Duong, T. Q., Jiang, J., & Hara, T. (2013). Localization algorithms of wireless sensor networks: A survey. Telecommunication Systems, 52, 2419–2436.

    Article  Google Scholar 

  47. Xing, B., & Gao, W. J. (2014). Innovative computational intelligence: A rough guide to 134 clever algorithms (pp. 22–28). Springer.

    Book  MATH  Google Scholar 

  48. Campelo, F., Aranha, C., Koot, R. (2020). Transmutative computation bestiary, 2019. https://github.com/fcampelo/ec-bestiary. Accessed 1 Nov 2020.

  49. Tzanetos, A., Fister, I., & Dounias, G. (2020). A comprehensive information base of nature-inspired mechanisms. Data in Brief, 31, 105792.

    Article  Google Scholar 

  50. Tao, F., Laili, Y., & Zhang, L. (2015). Brief history and overview of intelligent optimization mechanisms. Configurable intelligent optimization mechanism (pp. 3–33). Springer.

    Chapter  MATH  Google Scholar 

  51. Pham, D., & Karaboga, D. (2012). Intelligent optimisation techniques: genetic mechanisms, tabu search, simulated annealing and neural networks. Springer.

    MATH  Google Scholar 

  52. Belkasmi, M., Ben-Othman, J., Li, C., & Essaaidi, M. (2020). Advanced communication systems and information security: Second international conference, ACOSIS 2019, Marrakesh, Morocco, November 20–22, 2019, Revised Selected Papers. Springer.

    Book  Google Scholar 

  53. Behera, T. M., Mohapatra, S. K., Samal, U. C., Khan, M. S., Daneshmand, M., & Gandomi, A. H. (2019). I-SEP: An improved routing protocol for heterogeneous wsn for iot-based environmental monitoring. IEEE Internet of Things Journal, 7(1), 710–717.

    Article  Google Scholar 

  54. Xie, B., & Wang, C. (2017). An improved distributed power efficient clustering mechanism for heterogeneous WSNS. In 2017 IEEE Wireless Communications and Networking Conference (WCNC)

  55. Vinitha, A., & Rukmini, M. S. S. (2018). Energy efficient cluster-based routing protocol for wireless sensor network using nature inspired mechanism. International Journal of Pure and Applied Mathematics, 118(11), 725–732. https://doi.org/10.12732/ijpam.v118i11.93

    Article  Google Scholar 

  56. Dawood, M. S., Benazer, S. S., Saravanan, S. V., & Karthik, V. (2021). Energy efficient distance based clustering protocol for heterogeneous wireless sensor networks. Materials Today: Proceedings, 45, 2599–2602. https://doi.org/10.1016/j.matpr.2020.11.339

    Article  Google Scholar 

  57. Mekonnen, M. T., & Rao, K. N. (2017). Cluster optimization based on metaheuristic algorithms in wireless sensor networks. Wireless Personal Communications, 97, 2633–2647.

    Article  Google Scholar 

  58. Arora, S., & Singh, S. (2019). Butterfly optimization algorithm: A novel approach for global optimization. Soft Computing, 23, 715–734.

    Article  Google Scholar 

  59. Chauhan, A., & Kaushik, A. (2014). TADEEC: Threshold sensitive advanced distributed energy efficient clustering routing protocol for wireless sensor networks. International Journal of Computer Applications, 96(23), 26–31.

    Article  Google Scholar 

  60. Yi, D., & Yang, H. (2016). HEER—A delay-aware and energy-efficient routing protocol for wireless sensor networks. Computer Networks, 104, 155–173. https://doi.org/10.1016/j.comnet.2016.04.022

    Article  Google Scholar 

  61. Mostafaei, H. (2019). Power-efficient mechanism for reliable routing of wireless sensor networks. IEEE Transactions on Industrial Electronics, 66(7), 5567–5575.

    Article  Google Scholar 

  62. Luo, J., Hu, J., Wu, D., & Li, R. (2014). Opportunistic routing algorithm for relay node selection in wireless sensor networks. IEEE Transactions on Industrial Informatics, 11(1), 112–121. https://doi.org/10.1109/tii.2014.2374071

    Article  Google Scholar 

  63. Cui, Z., Fei, X. U. E., Zhang, S., Cai, X., Cao, Y., Zhang, W., & Chen, J. (2020). A hybrid blockchain-based identity authentication scheme for multi-wsn. IEEE Transactions on Services Computing, 13(2), 241–251.

    Google Scholar 

  64. Awan, S. H., et al. (2020). Blockchain with IoT, an emergent routing scheme for smart agriculture. International Journal Advances in Computer Science Application, 11(4), 420–429.

    Article  Google Scholar 

  65. Gambhir, A., Payal, A., & Arya, R. (2018). Performance analysis of artificial bee colony optimization based clustering protocol in various scenarios of WSN. Procedia computer science, 132, 183–188.

    Article  Google Scholar 

  66. Feng, L., Zhang, H., Lou, L., & Chen, Y. (2018). A blockchain-based collocation storage architecture for data security process platform of WSN. In 2018 IEEE 22nd international conference on computer supported cooperative work in design ((CSCWD)) (pp. 75-80). IEEE.

  67. Engmann, F., Katsriku, F. A., Abdulai, J. D., Adu-Manu, K. S., & Banaseka, F. K. (2018). Prolonging the lifetime of wireless sensor networks: A review of current techniques. Wireless Communications and Mobile Computing, 2018, 1–23.

    Article  Google Scholar 

  68. Khan, M. K., Shiraz, M., Ghafoor, K. Z., Khan, S., Sadiq, A. S., & Ahmed, G. (2018). EE-MRP: Power-efficient multistage routing protocol for wireless sensor networks. Wireless Communications and Mobile Computing, 2018, 1–13.

    Google Scholar 

  69. Xu, C., Xiong, Z., Zhao, G., & Yu, S. (2019). a power-efficient region source routing protocol for lifespan maximization in wsn. IEEE Access, 7, 135277–135289. https://doi.org/10.1109/access.2019.2942321

    Article  Google Scholar 

  70. Haseeb, K., Bakar, K. A., Ahmed, A., Darwish, T., & Ahmed, I. (2017). WECRR: Weighted energy-efficient clustering with robust routing for wireless sensor networks. Wireless Personal Communications, 97, 695–721.

    Article  Google Scholar 

  71. Lalwani, P., Das, S., Banka, H., & Kumar, C. (2018). CRHS: Clustering and routing in wireless sensor networks using harmony search algorithm. Neural Computing and Applications, 30, 639–659.

    Article  Google Scholar 

  72. Khan, M. Y., Javaid, N., Khan, M. A., Javaid, A., Khan, Z. A., & Qasim, U. (2013). Hybrid DEEC: Towards efficient energy utilization in wireless sensor networks. arXiv preprint arXiv:1303.4679.

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

RM and RKY contributed to collecting related literature and implementing the mechanism.

Corresponding author

Correspondence to Rashmi Mishra.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R., Yadav, R.K. Energy Efficient Cluster-Based Routing Protocol for WSN Using Nature Inspired Algorithm. Wireless Pers Commun 130, 2407–2440 (2023). https://doi.org/10.1007/s11277-023-10385-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-023-10385-5

Keywords

Navigation